{"title":"抗菌合剂多组分分析的偏最小二乘法","authors":"Farah Nouri, Nahla A. Alassaf","doi":"10.17721/moca.2023.92-100","DOIUrl":null,"url":null,"abstract":"This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal calibration model. The cross-validation method was used to determine the ideal number of components. The coefficient of determination (R2) and the root mean square error of calibration (RMSEC) are used to evaluate the calibration model. The relation between the LEV, MET, RIF, and SUL actual values and predicted values had a coefficient of determination that was higher than 0.997, showing very good accuracy of the devised approach. The obtained RMSEC values, 0.181056465 (LEV), 0.180375418 (MET), 0.142767171 (RIF), and 0.17157454 (SUL), show an analytical procedure with adequate precision. The suggested technique for quantitative analysis of the quaternary mixture of LEV, MET, RIF, and SUL have been applied successfully in different pharmaceutical preparations. The UV spectrophotometry assisted with chemometric-PLS without prior treatment, be utilised to resolve multicomponent mixtures successfully.","PeriodicalId":18626,"journal":{"name":"Methods and Objects of Chemical Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Least Squares Method for the Multicomponent Analysis of Antibacterial Mixture\",\"authors\":\"Farah Nouri, Nahla A. Alassaf\",\"doi\":\"10.17721/moca.2023.92-100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal calibration model. The cross-validation method was used to determine the ideal number of components. The coefficient of determination (R2) and the root mean square error of calibration (RMSEC) are used to evaluate the calibration model. The relation between the LEV, MET, RIF, and SUL actual values and predicted values had a coefficient of determination that was higher than 0.997, showing very good accuracy of the devised approach. The obtained RMSEC values, 0.181056465 (LEV), 0.180375418 (MET), 0.142767171 (RIF), and 0.17157454 (SUL), show an analytical procedure with adequate precision. The suggested technique for quantitative analysis of the quaternary mixture of LEV, MET, RIF, and SUL have been applied successfully in different pharmaceutical preparations. The UV spectrophotometry assisted with chemometric-PLS without prior treatment, be utilised to resolve multicomponent mixtures successfully.\",\"PeriodicalId\":18626,\"journal\":{\"name\":\"Methods and Objects of Chemical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Objects of Chemical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/moca.2023.92-100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Objects of Chemical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/moca.2023.92-100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Partial Least Squares Method for the Multicomponent Analysis of Antibacterial Mixture
This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal calibration model. The cross-validation method was used to determine the ideal number of components. The coefficient of determination (R2) and the root mean square error of calibration (RMSEC) are used to evaluate the calibration model. The relation between the LEV, MET, RIF, and SUL actual values and predicted values had a coefficient of determination that was higher than 0.997, showing very good accuracy of the devised approach. The obtained RMSEC values, 0.181056465 (LEV), 0.180375418 (MET), 0.142767171 (RIF), and 0.17157454 (SUL), show an analytical procedure with adequate precision. The suggested technique for quantitative analysis of the quaternary mixture of LEV, MET, RIF, and SUL have been applied successfully in different pharmaceutical preparations. The UV spectrophotometry assisted with chemometric-PLS without prior treatment, be utilised to resolve multicomponent mixtures successfully.
期刊介绍:
The journal "Methods and objects of chemical analysis" is peer-review journal and publishes original articles of theoretical and experimental analysis on topical issues and bio-analytical chemistry, chemical and pharmaceutical analysis, as well as chemical metrology. Submitted works shall cover the results of completed studies and shall make scientific contributions to the relevant area of expertise. The journal publishes review articles, research articles and articles related to latest developments of analytical instrumentations.