{"title":"泰国智慧城市中使用可再生能源的SDT智能混合路灯杆设计","authors":"Jatupon Em-Udom, Nattapon Jaisumroum","doi":"10.1007/s40866-023-00173-2","DOIUrl":null,"url":null,"abstract":"At present, public lighting, which is mainly street lighting, accounts for 3% of total electricity use of the world. In developing countries, electricity depends mainly on non-renewable thermal resources such as coal or gas. Once these resources are used up, they cannot be replaced, which is a major problem for humanity. Renewable energy sources such as solar and wind power are clean, safe, and inexhaustible. However, solar energy is dependent on sunlight and wind power is unpredictable, so it's a good idea to combine them. This study, we present the SDT streetlight design, and implementation of a solar PV and wind turbine hybrid system to obtain the electricity for streetlights. The HOMER software was used to determine the cost of energy and performance, which provides investments of feasibility. Compared with the streetlights using power from standard electrical grid the proposed streetlights can save the electricity consumption of 15,592,800 kWh/y and reduce the CO2 emission of 6,704,904 kgCO2. In addition, the residual electricity can be resold through the smart grid and make the city smarter and more sustainable, reduce their carbon emissions and reimagine their travel and businesses for a net-zero world.","PeriodicalId":36842,"journal":{"name":"Technology and Economics of Smart Grids and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDT Smart Hybrid Streetlight Pole Design Utilizing Renewable Energy for a Smart City in Thailand\",\"authors\":\"Jatupon Em-Udom, Nattapon Jaisumroum\",\"doi\":\"10.1007/s40866-023-00173-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, public lighting, which is mainly street lighting, accounts for 3% of total electricity use of the world. In developing countries, electricity depends mainly on non-renewable thermal resources such as coal or gas. Once these resources are used up, they cannot be replaced, which is a major problem for humanity. Renewable energy sources such as solar and wind power are clean, safe, and inexhaustible. However, solar energy is dependent on sunlight and wind power is unpredictable, so it's a good idea to combine them. This study, we present the SDT streetlight design, and implementation of a solar PV and wind turbine hybrid system to obtain the electricity for streetlights. The HOMER software was used to determine the cost of energy and performance, which provides investments of feasibility. Compared with the streetlights using power from standard electrical grid the proposed streetlights can save the electricity consumption of 15,592,800 kWh/y and reduce the CO2 emission of 6,704,904 kgCO2. In addition, the residual electricity can be resold through the smart grid and make the city smarter and more sustainable, reduce their carbon emissions and reimagine their travel and businesses for a net-zero world.\",\"PeriodicalId\":36842,\"journal\":{\"name\":\"Technology and Economics of Smart Grids and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Economics of Smart Grids and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40866-023-00173-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Economics of Smart Grids and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40866-023-00173-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
SDT Smart Hybrid Streetlight Pole Design Utilizing Renewable Energy for a Smart City in Thailand
At present, public lighting, which is mainly street lighting, accounts for 3% of total electricity use of the world. In developing countries, electricity depends mainly on non-renewable thermal resources such as coal or gas. Once these resources are used up, they cannot be replaced, which is a major problem for humanity. Renewable energy sources such as solar and wind power are clean, safe, and inexhaustible. However, solar energy is dependent on sunlight and wind power is unpredictable, so it's a good idea to combine them. This study, we present the SDT streetlight design, and implementation of a solar PV and wind turbine hybrid system to obtain the electricity for streetlights. The HOMER software was used to determine the cost of energy and performance, which provides investments of feasibility. Compared with the streetlights using power from standard electrical grid the proposed streetlights can save the electricity consumption of 15,592,800 kWh/y and reduce the CO2 emission of 6,704,904 kgCO2. In addition, the residual electricity can be resold through the smart grid and make the city smarter and more sustainable, reduce their carbon emissions and reimagine their travel and businesses for a net-zero world.