基于灰狼优化和JAYA算法的自然启发混合分区聚类方法

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Computer Science-AGH Pub Date : 2023-10-01 DOI:10.7494/csci.2023.24.3.4962
GYANARANJAN SHIAL, Sabita Sahoo, Sibarama Panigrahi
{"title":"基于灰狼优化和JAYA算法的自然启发混合分区聚类方法","authors":"GYANARANJAN SHIAL, Sabita Sahoo, Sibarama Panigrahi","doi":"10.7494/csci.2023.24.3.4962","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid meta-heuristic algorithm using Grey Wolf optimization (GWO) and JAYA algorithm for data clustering. The idea is use exploitative capability of JAYA algorithm in the explorative phase of GWO to form compact clusters. Here, instead of using one best and one worst solution for generating offspring, three best wolfs and three worst omega wolfs of the population are used. So, the best wolfs and worst omega wolfs assist in moving the new solutions towards the best solutions and simultaneously helps in staying away from the worst solutions. This enhances the chances of reaching the near optimal solutions. The superiority of the proposed method is compared with five promising algorithms, namely GWO, Sine-Cosine Algorithm (SCA), Particle Swarm Optimization (PSO), JAYA and K-means algorithms. The result obtained from the Duncan’s multiple range test and Nemenyi hypothesis based statistical test confirms the superiority and robustness of our proposed method.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":"67 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm\",\"authors\":\"GYANARANJAN SHIAL, Sabita Sahoo, Sibarama Panigrahi\",\"doi\":\"10.7494/csci.2023.24.3.4962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid meta-heuristic algorithm using Grey Wolf optimization (GWO) and JAYA algorithm for data clustering. The idea is use exploitative capability of JAYA algorithm in the explorative phase of GWO to form compact clusters. Here, instead of using one best and one worst solution for generating offspring, three best wolfs and three worst omega wolfs of the population are used. So, the best wolfs and worst omega wolfs assist in moving the new solutions towards the best solutions and simultaneously helps in staying away from the worst solutions. This enhances the chances of reaching the near optimal solutions. The superiority of the proposed method is compared with five promising algorithms, namely GWO, Sine-Cosine Algorithm (SCA), Particle Swarm Optimization (PSO), JAYA and K-means algorithms. The result obtained from the Duncan’s multiple range test and Nemenyi hypothesis based statistical test confirms the superiority and robustness of our proposed method.\",\"PeriodicalId\":41917,\"journal\":{\"name\":\"Computer Science-AGH\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science-AGH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/csci.2023.24.3.4962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/csci.2023.24.3.4962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于灰狼优化和JAYA算法的混合元启发式聚类算法。其思想是在GWO的探索阶段利用JAYA算法的开发能力来形成紧凑的聚类。在这里,不是使用一个最好和一个最差的解决方案来产生后代,而是使用种群中三个最好的狼和三个最差的狼。所以,最好的狼和最差的狼帮助将新的解决方案推向最好的解决方案,同时帮助远离最坏的解决方案。这增加了获得接近最优解的机会。将该方法的优越性与GWO算法、正弦余弦算法(SCA)、粒子群算法(PSO)、JAYA算法和K-means算法进行了比较。Duncan’s多元极差检验和基于Nemenyi假设的统计检验结果证实了本文方法的优越性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm
This paper presents a hybrid meta-heuristic algorithm using Grey Wolf optimization (GWO) and JAYA algorithm for data clustering. The idea is use exploitative capability of JAYA algorithm in the explorative phase of GWO to form compact clusters. Here, instead of using one best and one worst solution for generating offspring, three best wolfs and three worst omega wolfs of the population are used. So, the best wolfs and worst omega wolfs assist in moving the new solutions towards the best solutions and simultaneously helps in staying away from the worst solutions. This enhances the chances of reaching the near optimal solutions. The superiority of the proposed method is compared with five promising algorithms, namely GWO, Sine-Cosine Algorithm (SCA), Particle Swarm Optimization (PSO), JAYA and K-means algorithms. The result obtained from the Duncan’s multiple range test and Nemenyi hypothesis based statistical test confirms the superiority and robustness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science-AGH
Computer Science-AGH COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.40
自引率
0.00%
发文量
18
审稿时长
20 weeks
期刊最新文献
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm Database Replication for Disconnected Operations with Quasi Real-Time Synchronization Hybrid Variable Neighborhood Search for Solving School Bus-Driver Problem with Resource Constraints A Survey on Multi-Objective Based Parameter Optimization for Deep Learning Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value Estimation with Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1