Barbara Cardone, Ferdinando Di Martino, Salvatore Sessa
{"title":"YUV空间中的模糊变换图像压缩","authors":"Barbara Cardone, Ferdinando Di Martino, Salvatore Sessa","doi":"10.3390/computation11100191","DOIUrl":null,"url":null,"abstract":"This research proposes a new image compression method based on the F1-transform which improves the quality of the reconstructed image without increasing the coding/decoding CPU time. The advantage of compressing color images in the YUV space is due to the fact that while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space most of the image information perceived by the human eye is contained in the Y band, as opposed to the U and V bands. Using this advantage, we construct a new color image compression algorithm based on F1-transform in which the image compression is accomplished in the YUV space, so that better-quality compressed images can be obtained without increasing the execution time. The results of tests performed on a set of color images show that our color image compression method improves the quality of the decoded images with respect to the image compression algorithms JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of the selected compression rate and with comparable CPU times.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"81 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Transform Image Compression in the YUV Space\",\"authors\":\"Barbara Cardone, Ferdinando Di Martino, Salvatore Sessa\",\"doi\":\"10.3390/computation11100191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a new image compression method based on the F1-transform which improves the quality of the reconstructed image without increasing the coding/decoding CPU time. The advantage of compressing color images in the YUV space is due to the fact that while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space most of the image information perceived by the human eye is contained in the Y band, as opposed to the U and V bands. Using this advantage, we construct a new color image compression algorithm based on F1-transform in which the image compression is accomplished in the YUV space, so that better-quality compressed images can be obtained without increasing the execution time. The results of tests performed on a set of color images show that our color image compression method improves the quality of the decoded images with respect to the image compression algorithms JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of the selected compression rate and with comparable CPU times.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11100191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fuzzy Transform Image Compression in the YUV Space
This research proposes a new image compression method based on the F1-transform which improves the quality of the reconstructed image without increasing the coding/decoding CPU time. The advantage of compressing color images in the YUV space is due to the fact that while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space most of the image information perceived by the human eye is contained in the Y band, as opposed to the U and V bands. Using this advantage, we construct a new color image compression algorithm based on F1-transform in which the image compression is accomplished in the YUV space, so that better-quality compressed images can be obtained without increasing the execution time. The results of tests performed on a set of color images show that our color image compression method improves the quality of the decoded images with respect to the image compression algorithms JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of the selected compression rate and with comparable CPU times.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.