Paulo Matheus Borges Esteves, Micha Hensen, Michal Kuffa, Konrad Wegener
{"title":"电火花加工中点火延迟时间建模","authors":"Paulo Matheus Borges Esteves, Micha Hensen, Michal Kuffa, Konrad Wegener","doi":"10.3390/jmmp7050177","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive investigation and modeling of the ignition delay time (td) in wire-EDM (WEDM). The research focuses on the influence of gap distance, discharge energy, and piece height on the stochastic distributions of td, providing important insights into the complex properties of these distributions. Observations indicate that these parameters exert significant yet intricate influences on td, with a particular emphasis on the gap distance. A critical value was identified, around 8μm to 10μm, that divides the stochastic behavior. To capture the binomial nature of td, a mixture probability model consisting of two Weibull distribution curves was developed and validated through extensive experimentation and a data analysis. The model demonstrated strong agreement with observed cumulative probability curves, indicating its accuracy and reliability in predicting td. Further, a sensitivity analysis revealed regions of fast change, emphasizing the challenges and importance of careful parameter selection in control of WEDM processes. The findings of this study contribute to a deeper understanding of WEDM processes and provide a modeling approach for predicting td. Future research directions include refining the model by incorporating additional input parameters, investigating the influence of other process variables on td.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"6 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ignition Delay Time Modeling in Wire-EDM\",\"authors\":\"Paulo Matheus Borges Esteves, Micha Hensen, Michal Kuffa, Konrad Wegener\",\"doi\":\"10.3390/jmmp7050177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comprehensive investigation and modeling of the ignition delay time (td) in wire-EDM (WEDM). The research focuses on the influence of gap distance, discharge energy, and piece height on the stochastic distributions of td, providing important insights into the complex properties of these distributions. Observations indicate that these parameters exert significant yet intricate influences on td, with a particular emphasis on the gap distance. A critical value was identified, around 8μm to 10μm, that divides the stochastic behavior. To capture the binomial nature of td, a mixture probability model consisting of two Weibull distribution curves was developed and validated through extensive experimentation and a data analysis. The model demonstrated strong agreement with observed cumulative probability curves, indicating its accuracy and reliability in predicting td. Further, a sensitivity analysis revealed regions of fast change, emphasizing the challenges and importance of careful parameter selection in control of WEDM processes. The findings of this study contribute to a deeper understanding of WEDM processes and provide a modeling approach for predicting td. Future research directions include refining the model by incorporating additional input parameters, investigating the influence of other process variables on td.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7050177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7050177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
This study presents a comprehensive investigation and modeling of the ignition delay time (td) in wire-EDM (WEDM). The research focuses on the influence of gap distance, discharge energy, and piece height on the stochastic distributions of td, providing important insights into the complex properties of these distributions. Observations indicate that these parameters exert significant yet intricate influences on td, with a particular emphasis on the gap distance. A critical value was identified, around 8μm to 10μm, that divides the stochastic behavior. To capture the binomial nature of td, a mixture probability model consisting of two Weibull distribution curves was developed and validated through extensive experimentation and a data analysis. The model demonstrated strong agreement with observed cumulative probability curves, indicating its accuracy and reliability in predicting td. Further, a sensitivity analysis revealed regions of fast change, emphasizing the challenges and importance of careful parameter selection in control of WEDM processes. The findings of this study contribute to a deeper understanding of WEDM processes and provide a modeling approach for predicting td. Future research directions include refining the model by incorporating additional input parameters, investigating the influence of other process variables on td.