基于AIoT技术的电力施工现场人身安全监控系统

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Fuzzy Systems Pub Date : 2023-11-01 DOI:10.3233/jifs-235087
Hao Yuan, Hao Yang, Ruiqi Li, Jun Wang, Lin Tian
{"title":"基于AIoT技术的电力施工现场人身安全监控系统","authors":"Hao Yuan, Hao Yang, Ruiqi Li, Jun Wang, Lin Tian","doi":"10.3233/jifs-235087","DOIUrl":null,"url":null,"abstract":"For the purpose of real-time monitoring the hazard information on the electric power construction site, a personal safety monitoring system based on Artificial intelligence internet of things (AIoT) technology is designed. After the system sensing layer collects the gas information of the construction site through the gas sensor, limit current oxygen sensor and DS1820B temperature sensor, the edge computing device of the edge layer directly stores its calculation in the database of the platform layer through the data gateway. The Artificial Intelligence (AI) analysis module of this layer invokes the monitoring data of the power construction site of the database, and uses the personal safety identification method of the power construction site based on artificial intelligence technology, to complete the abnormal identification of monitoring data and realize personal safety monitoring. In addition, the system is also equipped with a power-fail detection module, which can collect the working voltage through the voltage transformer and compare it with the mains power standard to judge whether there is a power-fail risk, so as to prevent the problem of threatening personal safety due to the power-fail of the energized equipment. After testing, the system can monitor the operation status of the construction site in real time to protect personal safety.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"61 5","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personal safety monitoring system of electric power construction site based on AIoT Technology\",\"authors\":\"Hao Yuan, Hao Yang, Ruiqi Li, Jun Wang, Lin Tian\",\"doi\":\"10.3233/jifs-235087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the purpose of real-time monitoring the hazard information on the electric power construction site, a personal safety monitoring system based on Artificial intelligence internet of things (AIoT) technology is designed. After the system sensing layer collects the gas information of the construction site through the gas sensor, limit current oxygen sensor and DS1820B temperature sensor, the edge computing device of the edge layer directly stores its calculation in the database of the platform layer through the data gateway. The Artificial Intelligence (AI) analysis module of this layer invokes the monitoring data of the power construction site of the database, and uses the personal safety identification method of the power construction site based on artificial intelligence technology, to complete the abnormal identification of monitoring data and realize personal safety monitoring. In addition, the system is also equipped with a power-fail detection module, which can collect the working voltage through the voltage transformer and compare it with the mains power standard to judge whether there is a power-fail risk, so as to prevent the problem of threatening personal safety due to the power-fail of the energized equipment. After testing, the system can monitor the operation status of the construction site in real time to protect personal safety.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"61 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-235087\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-235087","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了实时监控电力施工现场的危害信息,设计了一种基于人工智能物联网(AIoT)技术的人身安全监控系统。系统传感层通过气体传感器、限流氧传感器、DS1820B温度传感器采集施工现场的气体信息后,边缘层的边缘计算设备通过数据网关直接将其计算结果存储在平台层的数据库中。该层的人工智能(AI)分析模块调用数据库中的电力施工现场监控数据,采用基于人工智能技术的电力施工现场人身安全识别方法,完成监控数据异常识别,实现人身安全监控。此外,系统还配备了断电检测模块,通过电压互感器采集工作电压,并与市电电源标准进行比对,判断是否存在断电风险,防止带电设备因断电而威胁人身安全的问题。经过测试,该系统可以实时监控施工现场的运行状态,保障人身安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personal safety monitoring system of electric power construction site based on AIoT Technology
For the purpose of real-time monitoring the hazard information on the electric power construction site, a personal safety monitoring system based on Artificial intelligence internet of things (AIoT) technology is designed. After the system sensing layer collects the gas information of the construction site through the gas sensor, limit current oxygen sensor and DS1820B temperature sensor, the edge computing device of the edge layer directly stores its calculation in the database of the platform layer through the data gateway. The Artificial Intelligence (AI) analysis module of this layer invokes the monitoring data of the power construction site of the database, and uses the personal safety identification method of the power construction site based on artificial intelligence technology, to complete the abnormal identification of monitoring data and realize personal safety monitoring. In addition, the system is also equipped with a power-fail detection module, which can collect the working voltage through the voltage transformer and compare it with the mains power standard to judge whether there is a power-fail risk, so as to prevent the problem of threatening personal safety due to the power-fail of the energized equipment. After testing, the system can monitor the operation status of the construction site in real time to protect personal safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Fuzzy Systems
Journal of Intelligent & Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
3.40
自引率
10.00%
发文量
965
审稿时长
5.1 months
期刊介绍: The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
期刊最新文献
Systematic review and meta-analysis of the screening and identification of key genes in gastric cancer using DNA microarray database DBSCAN-based energy users clustering for performance enhancement of deep learning model Implementation of a dynamic planning algorithm in accounting information technology administration Robust multi-frequency band joint dictionary learning with low-rank representation Investigation on distributed scheduling with lot-streaming considering setup time based on NSGA-II in a furniture intelligent manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1