基于GT-DQN的新能源充电卸载方法

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Fuzzy Systems Pub Date : 2023-11-01 DOI:10.3233/jifs-233990
Jianji Ren, Donghao Yang, Yongliang Yuan, Haiqing Liu, Bin Hao, Longlie Zhang
{"title":"基于GT-DQN的新能源充电卸载方法","authors":"Jianji Ren, Donghao Yang, Yongliang Yuan, Haiqing Liu, Bin Hao, Longlie Zhang","doi":"10.3233/jifs-233990","DOIUrl":null,"url":null,"abstract":"The utilization of green edge has emerged as a promising paradigm for the development of new energy vehicle (NEV). Nevertheless, the recharging of these vehicles poses a significant challenge in due to limited power resources and enormous transmission demands. A novel architecture based on Wifi-6 communication is proposed, which makes the most of heterogeneous edge nodes to achieve real-time processing and computation of tasks. To address the collaborative power resource optimization problem, the interference between different vehicles is considered, and the task offloading is optimized. In particular, the power contention among recharging clusters is modeled as an exact game and a task offloading strategy model is proposed jointly with the Deep Q-Network (DQN) algorithm, which is employed by a secondary application. Thereby, the recharging efficiency and task offloading computation are optimized and improved. Results indicate that the total resource consumption is favorably improved with this architecture and algorithm and the Nash equilibrium is also demonstrated.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"31 2","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An offloading method in new energy recharging based on GT-DQN\",\"authors\":\"Jianji Ren, Donghao Yang, Yongliang Yuan, Haiqing Liu, Bin Hao, Longlie Zhang\",\"doi\":\"10.3233/jifs-233990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of green edge has emerged as a promising paradigm for the development of new energy vehicle (NEV). Nevertheless, the recharging of these vehicles poses a significant challenge in due to limited power resources and enormous transmission demands. A novel architecture based on Wifi-6 communication is proposed, which makes the most of heterogeneous edge nodes to achieve real-time processing and computation of tasks. To address the collaborative power resource optimization problem, the interference between different vehicles is considered, and the task offloading is optimized. In particular, the power contention among recharging clusters is modeled as an exact game and a task offloading strategy model is proposed jointly with the Deep Q-Network (DQN) algorithm, which is employed by a secondary application. Thereby, the recharging efficiency and task offloading computation are optimized and improved. Results indicate that the total resource consumption is favorably improved with this architecture and algorithm and the Nash equilibrium is also demonstrated.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"31 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233990\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233990","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

绿色边缘的利用已经成为新能源汽车发展的一个很有前途的范例。然而,由于有限的电力资源和巨大的传输需求,这些车辆的充电面临着巨大的挑战。提出了一种基于Wifi-6通信的新架构,充分利用异构边缘节点,实现任务的实时处理和计算。为解决协同动力资源优化问题,考虑了不同车辆之间的干扰,对任务卸载进行了优化。特别地,将充电集群之间的电力争夺建模为精确博弈,并与深度q -网络(Deep Q-Network, DQN)算法联合提出了一种任务卸载策略模型,用于二次应用。从而优化和提高了充电效率和任务卸载计算。结果表明,该体系结构和算法显著提高了资源总消耗,并证明了纳什均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An offloading method in new energy recharging based on GT-DQN
The utilization of green edge has emerged as a promising paradigm for the development of new energy vehicle (NEV). Nevertheless, the recharging of these vehicles poses a significant challenge in due to limited power resources and enormous transmission demands. A novel architecture based on Wifi-6 communication is proposed, which makes the most of heterogeneous edge nodes to achieve real-time processing and computation of tasks. To address the collaborative power resource optimization problem, the interference between different vehicles is considered, and the task offloading is optimized. In particular, the power contention among recharging clusters is modeled as an exact game and a task offloading strategy model is proposed jointly with the Deep Q-Network (DQN) algorithm, which is employed by a secondary application. Thereby, the recharging efficiency and task offloading computation are optimized and improved. Results indicate that the total resource consumption is favorably improved with this architecture and algorithm and the Nash equilibrium is also demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Fuzzy Systems
Journal of Intelligent & Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
3.40
自引率
10.00%
发文量
965
审稿时长
5.1 months
期刊介绍: The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
期刊最新文献
Systematic review and meta-analysis of the screening and identification of key genes in gastric cancer using DNA microarray database DBSCAN-based energy users clustering for performance enhancement of deep learning model Implementation of a dynamic planning algorithm in accounting information technology administration Robust multi-frequency band joint dictionary learning with low-rank representation Investigation on distributed scheduling with lot-streaming considering setup time based on NSGA-II in a furniture intelligent manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1