Hongru Yang, Jinchen Xu, Jiangwei Hao, Zuoyan Zhang, Bei Zhou
{"title":"基于改进粒子群算法的浮点表达式错误检测","authors":"Hongru Yang, Jinchen Xu, Jiangwei Hao, Zuoyan Zhang, Bei Zhou","doi":"10.1049/2023/6681267","DOIUrl":null,"url":null,"abstract":"The use of floating-point numbers inevitably leads to inaccurate results and, in certain cases, significant program failures. Detecting floating-point errors is critical to ensuring that floating-point programs outputs are proper. However, due to the sparsity of floating-point errors, only a limited number of inputs can cause significant floating-point errors, and determining how to detect these inputs and to selecting the appropriate search technique is critical to detecting significant errors. This paper proposes characteristic particle swarm optimization (CPSO) algorithm based on particle swarm optimization (PSO) algorithm. The floating-point expression error detection tool PSOED is implemented, which can detect significant errors in floating-point arithmetic expressions and provide corresponding input. The method presented in this paper is based on two insights: (1) treating floating-point error detection as a search problem and selecting reliable heuristic search strategies to solve the problem; (2) fully utilizing the error distribution laws of expressions and the distribution characteristics of floating-point numbers to guide the search space generation and improve the search efficiency. This paper selects 28 expressions from the FPBench standard set as test cases, uses PSOED to detect the maximum error of the expressions, and compares them to the current dynamic error detection tools S3FP and Herbie. PSOED detects the maximum error 100% better than S3FP, 68% better than Herbie, and 14% equivalent to Herbie. The results of the experiments indicate that PSOED can detect significant floating-point expression errors.","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"27 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Floating-Point Expression Errors Based Improved PSO Algorithm\",\"authors\":\"Hongru Yang, Jinchen Xu, Jiangwei Hao, Zuoyan Zhang, Bei Zhou\",\"doi\":\"10.1049/2023/6681267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of floating-point numbers inevitably leads to inaccurate results and, in certain cases, significant program failures. Detecting floating-point errors is critical to ensuring that floating-point programs outputs are proper. However, due to the sparsity of floating-point errors, only a limited number of inputs can cause significant floating-point errors, and determining how to detect these inputs and to selecting the appropriate search technique is critical to detecting significant errors. This paper proposes characteristic particle swarm optimization (CPSO) algorithm based on particle swarm optimization (PSO) algorithm. The floating-point expression error detection tool PSOED is implemented, which can detect significant errors in floating-point arithmetic expressions and provide corresponding input. The method presented in this paper is based on two insights: (1) treating floating-point error detection as a search problem and selecting reliable heuristic search strategies to solve the problem; (2) fully utilizing the error distribution laws of expressions and the distribution characteristics of floating-point numbers to guide the search space generation and improve the search efficiency. This paper selects 28 expressions from the FPBench standard set as test cases, uses PSOED to detect the maximum error of the expressions, and compares them to the current dynamic error detection tools S3FP and Herbie. PSOED detects the maximum error 100% better than S3FP, 68% better than Herbie, and 14% equivalent to Herbie. The results of the experiments indicate that PSOED can detect significant floating-point expression errors.\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/6681267\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/6681267","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Detecting Floating-Point Expression Errors Based Improved PSO Algorithm
The use of floating-point numbers inevitably leads to inaccurate results and, in certain cases, significant program failures. Detecting floating-point errors is critical to ensuring that floating-point programs outputs are proper. However, due to the sparsity of floating-point errors, only a limited number of inputs can cause significant floating-point errors, and determining how to detect these inputs and to selecting the appropriate search technique is critical to detecting significant errors. This paper proposes characteristic particle swarm optimization (CPSO) algorithm based on particle swarm optimization (PSO) algorithm. The floating-point expression error detection tool PSOED is implemented, which can detect significant errors in floating-point arithmetic expressions and provide corresponding input. The method presented in this paper is based on two insights: (1) treating floating-point error detection as a search problem and selecting reliable heuristic search strategies to solve the problem; (2) fully utilizing the error distribution laws of expressions and the distribution characteristics of floating-point numbers to guide the search space generation and improve the search efficiency. This paper selects 28 expressions from the FPBench standard set as test cases, uses PSOED to detect the maximum error of the expressions, and compares them to the current dynamic error detection tools S3FP and Herbie. PSOED detects the maximum error 100% better than S3FP, 68% better than Herbie, and 14% equivalent to Herbie. The results of the experiments indicate that PSOED can detect significant floating-point expression errors.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf