A. M. Udeneev, N. A. Kalyagina, V. F. Reps, V. V. Kozlova, L. A. Pigunova, D. I. Pozdnyakov, A. S. Skobeltsin, V. B. Loschenov
{"title":"动物模型脊髓损伤区域的光谱荧光分析","authors":"A. M. Udeneev, N. A. Kalyagina, V. F. Reps, V. V. Kozlova, L. A. Pigunova, D. I. Pozdnyakov, A. S. Skobeltsin, V. B. Loschenov","doi":"10.24931/2413-9432-2023-12-3-16-20","DOIUrl":null,"url":null,"abstract":"The purpose of the work is to follow the dynamics of changes in fluorescent signals in the near-surface layers of tissue of injured areas of the back of laboratory animals, which will allow, by indirect evidence, to evaluate the information content of fluorescence diagnosis for subsequent possible diagnostic monitoring of photodynamic therapy of the spinal cord. The model animals were Wistar rats. Two types of contusions were modeled: pneumo-contusion and contusion by a falling load. Methylene blue and indocyanine green were used as photosensitizers. Fluorescence measurements were carried out by imaging and spectrometric methods. A stroboscopic fluorescence imager with an excitation wavelength of 630 nm was used to acquire fluorescence images. The LESA-01-BIOSPEC spectrometer with a He-Ne laser excitation allowed to obtain spectra. It was shown that both methods make it possible to estimate the fluorescence value of methylene blue and indocyanine green in the tissues under study. Moreover, the photographic method also allows to obtain the spatial distribution of fluorescence. The general trend found in the data is a more intense and uniform fluorescence of the dorsal region of rats with methylene blue and a less intense, but more contrasting distribution of indocyanine green. The presented methods are non-invasive, which makes them attractive for diagnostic use. However, due to the shallow depth of signal reception, the condition of the spine can be determined only indirectly, by the condition of the near-surface layers of tissue that accumulate the photosensitizer.","PeriodicalId":37713,"journal":{"name":"Biomedical Photonics","volume":"44 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo and spectral fluorescence analysis of the spinal cord injury area in animal models\",\"authors\":\"A. M. Udeneev, N. A. Kalyagina, V. F. Reps, V. V. Kozlova, L. A. Pigunova, D. I. Pozdnyakov, A. S. Skobeltsin, V. B. Loschenov\",\"doi\":\"10.24931/2413-9432-2023-12-3-16-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the work is to follow the dynamics of changes in fluorescent signals in the near-surface layers of tissue of injured areas of the back of laboratory animals, which will allow, by indirect evidence, to evaluate the information content of fluorescence diagnosis for subsequent possible diagnostic monitoring of photodynamic therapy of the spinal cord. The model animals were Wistar rats. Two types of contusions were modeled: pneumo-contusion and contusion by a falling load. Methylene blue and indocyanine green were used as photosensitizers. Fluorescence measurements were carried out by imaging and spectrometric methods. A stroboscopic fluorescence imager with an excitation wavelength of 630 nm was used to acquire fluorescence images. The LESA-01-BIOSPEC spectrometer with a He-Ne laser excitation allowed to obtain spectra. It was shown that both methods make it possible to estimate the fluorescence value of methylene blue and indocyanine green in the tissues under study. Moreover, the photographic method also allows to obtain the spatial distribution of fluorescence. The general trend found in the data is a more intense and uniform fluorescence of the dorsal region of rats with methylene blue and a less intense, but more contrasting distribution of indocyanine green. The presented methods are non-invasive, which makes them attractive for diagnostic use. However, due to the shallow depth of signal reception, the condition of the spine can be determined only indirectly, by the condition of the near-surface layers of tissue that accumulate the photosensitizer.\",\"PeriodicalId\":37713,\"journal\":{\"name\":\"Biomedical Photonics\",\"volume\":\"44 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24931/2413-9432-2023-12-3-16-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24931/2413-9432-2023-12-3-16-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Photo and spectral fluorescence analysis of the spinal cord injury area in animal models
The purpose of the work is to follow the dynamics of changes in fluorescent signals in the near-surface layers of tissue of injured areas of the back of laboratory animals, which will allow, by indirect evidence, to evaluate the information content of fluorescence diagnosis for subsequent possible diagnostic monitoring of photodynamic therapy of the spinal cord. The model animals were Wistar rats. Two types of contusions were modeled: pneumo-contusion and contusion by a falling load. Methylene blue and indocyanine green were used as photosensitizers. Fluorescence measurements were carried out by imaging and spectrometric methods. A stroboscopic fluorescence imager with an excitation wavelength of 630 nm was used to acquire fluorescence images. The LESA-01-BIOSPEC spectrometer with a He-Ne laser excitation allowed to obtain spectra. It was shown that both methods make it possible to estimate the fluorescence value of methylene blue and indocyanine green in the tissues under study. Moreover, the photographic method also allows to obtain the spatial distribution of fluorescence. The general trend found in the data is a more intense and uniform fluorescence of the dorsal region of rats with methylene blue and a less intense, but more contrasting distribution of indocyanine green. The presented methods are non-invasive, which makes them attractive for diagnostic use. However, due to the shallow depth of signal reception, the condition of the spine can be determined only indirectly, by the condition of the near-surface layers of tissue that accumulate the photosensitizer.
期刊介绍:
The main goal of the journal – to promote the development of Russian biomedical photonics and implementation of its advances into medical practice. The primary objectives: - Presentation of up-to-date results of scientific and in research and scientific and practical (clinical and experimental) activity in the field of biomedical photonics. - Development of united Russian media for integration of knowledge and experience of scientists and practitioners in this field. - Distribution of best practices in laser medicine to regions. - Keeping the clinicians informed about new methods and devices for laser medicine - Approval of investigations of Ph.D candidates and applicants.