面向深度强化学习网络控制器的未来解释

Q4 Computer Science Performance Evaluation Review Pub Date : 2023-09-28 DOI:10.1145/3626570.3626607
Sagar Patel, Sangeetha Abdu Jyothi, Nina Narodytska
{"title":"面向深度强化学习网络控制器的未来解释","authors":"Sagar Patel, Sangeetha Abdu Jyothi, Nina Narodytska","doi":"10.1145/3626570.3626607","DOIUrl":null,"url":null,"abstract":"Lack of explainability is hindering the practical adoption of high-performance Deep Reinforcement Learning (DRL) controllers. Prior work focused on explaining the controller by identifying salient features of the controller's input. However, these feature-based methods focus solely on inputs and do not fully explain the controller's policy. In this paper, we put forward future-based explainers as an essential tool for providing insights into the controller's decision-making process and, thereby, facilitating the practical deployment of DRL controllers. We highlight two applications of futurebased explainers in the networking domain: online safety assurance and guided controller design. Finally, we provide a roadmap for the practical development and deployment of future-based explainers for DRL network controllers.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Future-Based Explanations for Deep RL Network Controllers\",\"authors\":\"Sagar Patel, Sangeetha Abdu Jyothi, Nina Narodytska\",\"doi\":\"10.1145/3626570.3626607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lack of explainability is hindering the practical adoption of high-performance Deep Reinforcement Learning (DRL) controllers. Prior work focused on explaining the controller by identifying salient features of the controller's input. However, these feature-based methods focus solely on inputs and do not fully explain the controller's policy. In this paper, we put forward future-based explainers as an essential tool for providing insights into the controller's decision-making process and, thereby, facilitating the practical deployment of DRL controllers. We highlight two applications of futurebased explainers in the networking domain: online safety assurance and guided controller design. Finally, we provide a roadmap for the practical development and deployment of future-based explainers for DRL network controllers.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626570.3626607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

缺乏可解释性阻碍了高性能深度强化学习(DRL)控制器的实际采用。先前的工作集中在通过识别控制器输入的显著特征来解释控制器。然而,这些基于特征的方法只关注输入,并不能完全解释控制器的策略。在本文中,我们提出了基于未来的解释器作为一种重要工具,用于提供对控制器决策过程的见解,从而促进DRL控制器的实际部署。我们重点介绍了基于未来的解释器在网络领域的两个应用:在线安全保证和引导控制器设计。最后,我们为DRL网络控制器的基于未来的解释器的实际开发和部署提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Future-Based Explanations for Deep RL Network Controllers
Lack of explainability is hindering the practical adoption of high-performance Deep Reinforcement Learning (DRL) controllers. Prior work focused on explaining the controller by identifying salient features of the controller's input. However, these feature-based methods focus solely on inputs and do not fully explain the controller's policy. In this paper, we put forward future-based explainers as an essential tool for providing insights into the controller's decision-making process and, thereby, facilitating the practical deployment of DRL controllers. We highlight two applications of futurebased explainers in the networking domain: online safety assurance and guided controller design. Finally, we provide a roadmap for the practical development and deployment of future-based explainers for DRL network controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
期刊最新文献
Exponential Tail Bounds on Queues Tackling Deployability Challenges in ML-Powered Networks GHZ distillation protocols in the presence of decoherence Markov Decision Process Framework for Control-Based Reinforcement Learning Entanglement Management through Swapping over Quantum Internets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1