基于学习的最优量子交换机调度

Q4 Computer Science Performance Evaluation Review Pub Date : 2023-09-28 DOI:10.1145/3626570.3626597
Jiatai Huang, Longbo Huang
{"title":"基于学习的最优量子交换机调度","authors":"Jiatai Huang, Longbo Huang","doi":"10.1145/3626570.3626597","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of optimal scheduling for quantum switches with dynamic demand and random entanglement successes. Different from prior results that often focus on (known) fixed entanglement success probabilities, we assume zero prior knowledge about the entanglement success probabilities and allow them to vary from time to time in an adversarial manner. We propose a learning-based algorithm QSSoftMW based on the framework developed in [1], which combines adversarial learning and Lyapunov queue analysis. We show that QSSoftMW is able to automatically adapt to the changing system statistics and ensure quantum switch stability.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-based Optimal Quantum Switch Scheduling\",\"authors\":\"Jiatai Huang, Longbo Huang\",\"doi\":\"10.1145/3626570.3626597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of optimal scheduling for quantum switches with dynamic demand and random entanglement successes. Different from prior results that often focus on (known) fixed entanglement success probabilities, we assume zero prior knowledge about the entanglement success probabilities and allow them to vary from time to time in an adversarial manner. We propose a learning-based algorithm QSSoftMW based on the framework developed in [1], which combines adversarial learning and Lyapunov queue analysis. We show that QSSoftMW is able to automatically adapt to the changing system statistics and ensure quantum switch stability.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626570.3626597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有动态需求和随机纠缠成功的量子交换机的最优调度问题。与通常关注(已知的)固定纠缠成功概率的先前结果不同,我们假设纠缠成功概率的先验知识为零,并允许它们以对抗的方式不时变化。我们基于[1]开发的框架提出了一种基于学习的算法QSSoftMW,该算法结合了对抗性学习和Lyapunov队列分析。研究表明,QSSoftMW能够自动适应系统统计量的变化,并保证量子开关的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning-based Optimal Quantum Switch Scheduling
In this paper, we consider the problem of optimal scheduling for quantum switches with dynamic demand and random entanglement successes. Different from prior results that often focus on (known) fixed entanglement success probabilities, we assume zero prior knowledge about the entanglement success probabilities and allow them to vary from time to time in an adversarial manner. We propose a learning-based algorithm QSSoftMW based on the framework developed in [1], which combines adversarial learning and Lyapunov queue analysis. We show that QSSoftMW is able to automatically adapt to the changing system statistics and ensure quantum switch stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
期刊最新文献
Exponential Tail Bounds on Queues Tackling Deployability Challenges in ML-Powered Networks GHZ distillation protocols in the presence of decoherence Markov Decision Process Framework for Control-Based Reinforcement Learning Entanglement Management through Swapping over Quantum Internets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1