沉积型伊萨山矿床的岩浆铜和流体来源

IF 3.4 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochemical Perspectives Letters Pub Date : 2023-09-01 DOI:10.7185/geochemlet.2330
I.V. Sanislav, R. Mathur, P. Rea, P.H.G.M. Dirks, B. Mahan, L. Godfrey, H. Degeling
{"title":"沉积型伊萨山矿床的岩浆铜和流体来源","authors":"I.V. Sanislav, R. Mathur, P. Rea, P.H.G.M. Dirks, B. Mahan, L. Godfrey, H. Degeling","doi":"10.7185/geochemlet.2330","DOIUrl":null,"url":null,"abstract":"Ninety chalcopyrite samples were collected from drill holes across well-known ore bodies and the low-grade envelope around the Mt Isa deposit. The textural position of chalcopyrite grains targeted for analysis were determined before the sulphides were analysed, and sulphides in similar textural positions were compared. Full log and assay data were available for all drill holes. The sampling strategy involved: to sample across the ore body from the core of the ore body to the most distal parts that contain chalcopyrite and to systematically collect samples in relationships with major structures, to sample within the same stratigraphic horizon, to sample across the entire deposit. Chalcopyrite grains were handpicked from each sample at the Juniata College, USA and sampled with a drill dremel tool. Between 10 to 50 mg of chalcopyrite was dissolved in 4 ml of ultrapure, heated, aqua regia overnight. Due to the fact copper is a dominant ion in the mineral, no column chemistry was conducted on the chalcopyrite samples as demonstrated in (Mathur et al., 2005; Zhu et al., 2000; Zhang et al., 2020). Isotope analyses were carried out on MCICP-MS instruments at various facilities (Penn State University, Washington State University and Rutgers University). Cu isotope values were corrected for mass bias using traditional standard–sample–standard bracketing with the NISTSRM976 standard reference material and data are presented in the traditional delta notation (in per mil) compared to this standard. The instruments were in wet-plasma mode and the solutions were measured at 200 ng/g. Samples and reference materials matched to within 30 % of the Cu signal. QA/QC for the results was monitored using an in-house USA coin (1838 USA CENT δCu = 0.01 ± 0.06 ‰ (n=39 combined from all three locations) and BVHO-2 with values overlapping those reported in the literature.","PeriodicalId":12613,"journal":{"name":"Geochemical Perspectives Letters","volume":"23 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A magmatic copper and fluid source for the sediment-hosted Mount Isa deposit\",\"authors\":\"I.V. Sanislav, R. Mathur, P. Rea, P.H.G.M. Dirks, B. Mahan, L. Godfrey, H. Degeling\",\"doi\":\"10.7185/geochemlet.2330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ninety chalcopyrite samples were collected from drill holes across well-known ore bodies and the low-grade envelope around the Mt Isa deposit. The textural position of chalcopyrite grains targeted for analysis were determined before the sulphides were analysed, and sulphides in similar textural positions were compared. Full log and assay data were available for all drill holes. The sampling strategy involved: to sample across the ore body from the core of the ore body to the most distal parts that contain chalcopyrite and to systematically collect samples in relationships with major structures, to sample within the same stratigraphic horizon, to sample across the entire deposit. Chalcopyrite grains were handpicked from each sample at the Juniata College, USA and sampled with a drill dremel tool. Between 10 to 50 mg of chalcopyrite was dissolved in 4 ml of ultrapure, heated, aqua regia overnight. Due to the fact copper is a dominant ion in the mineral, no column chemistry was conducted on the chalcopyrite samples as demonstrated in (Mathur et al., 2005; Zhu et al., 2000; Zhang et al., 2020). Isotope analyses were carried out on MCICP-MS instruments at various facilities (Penn State University, Washington State University and Rutgers University). Cu isotope values were corrected for mass bias using traditional standard–sample–standard bracketing with the NISTSRM976 standard reference material and data are presented in the traditional delta notation (in per mil) compared to this standard. The instruments were in wet-plasma mode and the solutions were measured at 200 ng/g. Samples and reference materials matched to within 30 % of the Cu signal. QA/QC for the results was monitored using an in-house USA coin (1838 USA CENT δCu = 0.01 ± 0.06 ‰ (n=39 combined from all three locations) and BVHO-2 with values overlapping those reported in the literature.\",\"PeriodicalId\":12613,\"journal\":{\"name\":\"Geochemical Perspectives Letters\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Perspectives Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7185/geochemlet.2330\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Perspectives Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7185/geochemlet.2330","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A magmatic copper and fluid source for the sediment-hosted Mount Isa deposit
Ninety chalcopyrite samples were collected from drill holes across well-known ore bodies and the low-grade envelope around the Mt Isa deposit. The textural position of chalcopyrite grains targeted for analysis were determined before the sulphides were analysed, and sulphides in similar textural positions were compared. Full log and assay data were available for all drill holes. The sampling strategy involved: to sample across the ore body from the core of the ore body to the most distal parts that contain chalcopyrite and to systematically collect samples in relationships with major structures, to sample within the same stratigraphic horizon, to sample across the entire deposit. Chalcopyrite grains were handpicked from each sample at the Juniata College, USA and sampled with a drill dremel tool. Between 10 to 50 mg of chalcopyrite was dissolved in 4 ml of ultrapure, heated, aqua regia overnight. Due to the fact copper is a dominant ion in the mineral, no column chemistry was conducted on the chalcopyrite samples as demonstrated in (Mathur et al., 2005; Zhu et al., 2000; Zhang et al., 2020). Isotope analyses were carried out on MCICP-MS instruments at various facilities (Penn State University, Washington State University and Rutgers University). Cu isotope values were corrected for mass bias using traditional standard–sample–standard bracketing with the NISTSRM976 standard reference material and data are presented in the traditional delta notation (in per mil) compared to this standard. The instruments were in wet-plasma mode and the solutions were measured at 200 ng/g. Samples and reference materials matched to within 30 % of the Cu signal. QA/QC for the results was monitored using an in-house USA coin (1838 USA CENT δCu = 0.01 ± 0.06 ‰ (n=39 combined from all three locations) and BVHO-2 with values overlapping those reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemical Perspectives Letters
Geochemical Perspectives Letters Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
7.00
自引率
2.00%
发文量
42
审稿时长
15 weeks
期刊介绍: Geochemical Perspectives Letters is an open access, internationally peer-reviewed journal of the European Association of Geochemistry (EAG) that publishes short, highest-quality articles spanning geochemical sciences. The journal aims at rapid publication of the most novel research in geochemistry with a focus on outstanding quality, international importance, originality, and stimulating new developments across the vast array of geochemical disciplines.
期刊最新文献
Barium isotope evidence for a magmatic fluid-dominated petrogenesis of LCT-type pegmatites Subduction of sedimentary carbonate in the Mariana trench Corrigendum to “Sulfur solubility in a deep magma ocean and implications for the deep sulfur cycle” by Steenstra et al., 2022. A baseline for the Sn isotopic composition of the upper continental crust Neoarchean marine chemical sediments as archives of Hadean silicate differentiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1