Sk Minhajur Rahaman, Jonathan Granot, Paz Beniamini
{"title":"来自内部冲击的快速伽马射线爆发——新见解","authors":"Sk Minhajur Rahaman, Jonathan Granot, Paz Beniamini","doi":"10.1093/mnrasl/slad168","DOIUrl":null,"url":null,"abstract":"Abstract Internal shocks are a leading candidate for the dissipation mechanism that powers the prompt γ-ray emission in gamma-ray bursts (GRBs). In this scenario a compact central source produces an ultra-relativistic outflow with varying speeds, causing faster parts or shells to collide with slower ones. Each collision produces a pair of shocks – a forward shock (FS) propagating into the slower leading shell and a reverse shock (RS) propagating into the faster trailing shell. The RS’s lab-frame speed is always smaller, while the RS is typically stronger than the FS, leading to different conditions in the two shocked regions that both contribute to the observed emission. We show that optically-thin synchrotron emission from both (weaker FS + stronger RS) can naturally explain key features of prompt GRB emission such as the pulse shapes, time-evolution of the νFν peak flux and photon-energy, and the spectrum. Particularly, it can account for two features commonly observed in GRB spectra: (i) a sub-dominant low-energy spectral component (often interpreted as “photospheric”-like), or (ii) a doubly-broken power-law spectrum with the low-energy spectral slope approaching the slow cooling limit. Both features can be obtained while maintaining high overall radiative efficiency without any fine-tuning of the physical conditions.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"30 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Gamma-Ray Burst Emission from Internal Shocks – New Insights\",\"authors\":\"Sk Minhajur Rahaman, Jonathan Granot, Paz Beniamini\",\"doi\":\"10.1093/mnrasl/slad168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Internal shocks are a leading candidate for the dissipation mechanism that powers the prompt γ-ray emission in gamma-ray bursts (GRBs). In this scenario a compact central source produces an ultra-relativistic outflow with varying speeds, causing faster parts or shells to collide with slower ones. Each collision produces a pair of shocks – a forward shock (FS) propagating into the slower leading shell and a reverse shock (RS) propagating into the faster trailing shell. The RS’s lab-frame speed is always smaller, while the RS is typically stronger than the FS, leading to different conditions in the two shocked regions that both contribute to the observed emission. We show that optically-thin synchrotron emission from both (weaker FS + stronger RS) can naturally explain key features of prompt GRB emission such as the pulse shapes, time-evolution of the νFν peak flux and photon-energy, and the spectrum. Particularly, it can account for two features commonly observed in GRB spectra: (i) a sub-dominant low-energy spectral component (often interpreted as “photospheric”-like), or (ii) a doubly-broken power-law spectrum with the low-energy spectral slope approaching the slow cooling limit. Both features can be obtained while maintaining high overall radiative efficiency without any fine-tuning of the physical conditions.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"30 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Prompt Gamma-Ray Burst Emission from Internal Shocks – New Insights
Abstract Internal shocks are a leading candidate for the dissipation mechanism that powers the prompt γ-ray emission in gamma-ray bursts (GRBs). In this scenario a compact central source produces an ultra-relativistic outflow with varying speeds, causing faster parts or shells to collide with slower ones. Each collision produces a pair of shocks – a forward shock (FS) propagating into the slower leading shell and a reverse shock (RS) propagating into the faster trailing shell. The RS’s lab-frame speed is always smaller, while the RS is typically stronger than the FS, leading to different conditions in the two shocked regions that both contribute to the observed emission. We show that optically-thin synchrotron emission from both (weaker FS + stronger RS) can naturally explain key features of prompt GRB emission such as the pulse shapes, time-evolution of the νFν peak flux and photon-energy, and the spectrum. Particularly, it can account for two features commonly observed in GRB spectra: (i) a sub-dominant low-energy spectral component (often interpreted as “photospheric”-like), or (ii) a doubly-broken power-law spectrum with the low-energy spectral slope approaching the slow cooling limit. Both features can be obtained while maintaining high overall radiative efficiency without any fine-tuning of the physical conditions.
期刊介绍:
For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.