来自内部冲击的快速伽马射线爆发——新见解

Q1 Earth and Planetary Sciences Monthly Notices of the Royal Astronomical Society: Letters Pub Date : 2023-11-08 DOI:10.1093/mnrasl/slad168
Sk Minhajur Rahaman, Jonathan Granot, Paz Beniamini
{"title":"来自内部冲击的快速伽马射线爆发——新见解","authors":"Sk Minhajur Rahaman, Jonathan Granot, Paz Beniamini","doi":"10.1093/mnrasl/slad168","DOIUrl":null,"url":null,"abstract":"Abstract Internal shocks are a leading candidate for the dissipation mechanism that powers the prompt γ-ray emission in gamma-ray bursts (GRBs). In this scenario a compact central source produces an ultra-relativistic outflow with varying speeds, causing faster parts or shells to collide with slower ones. Each collision produces a pair of shocks – a forward shock (FS) propagating into the slower leading shell and a reverse shock (RS) propagating into the faster trailing shell. The RS’s lab-frame speed is always smaller, while the RS is typically stronger than the FS, leading to different conditions in the two shocked regions that both contribute to the observed emission. We show that optically-thin synchrotron emission from both (weaker FS + stronger RS) can naturally explain key features of prompt GRB emission such as the pulse shapes, time-evolution of the νFν peak flux and photon-energy, and the spectrum. Particularly, it can account for two features commonly observed in GRB spectra: (i) a sub-dominant low-energy spectral component (often interpreted as “photospheric”-like), or (ii) a doubly-broken power-law spectrum with the low-energy spectral slope approaching the slow cooling limit. Both features can be obtained while maintaining high overall radiative efficiency without any fine-tuning of the physical conditions.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"30 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Gamma-Ray Burst Emission from Internal Shocks – New Insights\",\"authors\":\"Sk Minhajur Rahaman, Jonathan Granot, Paz Beniamini\",\"doi\":\"10.1093/mnrasl/slad168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Internal shocks are a leading candidate for the dissipation mechanism that powers the prompt γ-ray emission in gamma-ray bursts (GRBs). In this scenario a compact central source produces an ultra-relativistic outflow with varying speeds, causing faster parts or shells to collide with slower ones. Each collision produces a pair of shocks – a forward shock (FS) propagating into the slower leading shell and a reverse shock (RS) propagating into the faster trailing shell. The RS’s lab-frame speed is always smaller, while the RS is typically stronger than the FS, leading to different conditions in the two shocked regions that both contribute to the observed emission. We show that optically-thin synchrotron emission from both (weaker FS + stronger RS) can naturally explain key features of prompt GRB emission such as the pulse shapes, time-evolution of the νFν peak flux and photon-energy, and the spectrum. Particularly, it can account for two features commonly observed in GRB spectra: (i) a sub-dominant low-energy spectral component (often interpreted as “photospheric”-like), or (ii) a doubly-broken power-law spectrum with the low-energy spectral slope approaching the slow cooling limit. Both features can be obtained while maintaining high overall radiative efficiency without any fine-tuning of the physical conditions.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"30 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

内部激波是伽马射线暴(GRBs)中激发γ射线发射的主要耗散机制。在这种情况下,紧凑的中心源会产生速度不同的超相对论性流出,导致较快的部分或壳与较慢的部分或壳发生碰撞。每次碰撞都会产生一对激波——正向激波(FS)传播到较慢的前壳,反向激波(RS)传播到较快的后壳。RS的实验室帧速度总是较小,而RS通常比FS强,导致两个激波区域的不同条件都有助于观测到的发射。我们发现,两种(弱FS +强RS)的光学薄同步辐射可以自然地解释瞬发GRB发射的关键特征,如脉冲形状、ν峰通量和光子能量的时间演化以及光谱。特别是,它可以解释GRB光谱中常见的两个特征:(i)次优势的低能量光谱成分(通常被解释为“光球”样),或(ii)低能量光谱斜率接近慢冷却极限的双破幂律谱。这两种特性都可以在不需要对物理条件进行微调的情况下保持较高的整体辐射效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prompt Gamma-Ray Burst Emission from Internal Shocks – New Insights
Abstract Internal shocks are a leading candidate for the dissipation mechanism that powers the prompt γ-ray emission in gamma-ray bursts (GRBs). In this scenario a compact central source produces an ultra-relativistic outflow with varying speeds, causing faster parts or shells to collide with slower ones. Each collision produces a pair of shocks – a forward shock (FS) propagating into the slower leading shell and a reverse shock (RS) propagating into the faster trailing shell. The RS’s lab-frame speed is always smaller, while the RS is typically stronger than the FS, leading to different conditions in the two shocked regions that both contribute to the observed emission. We show that optically-thin synchrotron emission from both (weaker FS + stronger RS) can naturally explain key features of prompt GRB emission such as the pulse shapes, time-evolution of the νFν peak flux and photon-energy, and the spectrum. Particularly, it can account for two features commonly observed in GRB spectra: (i) a sub-dominant low-energy spectral component (often interpreted as “photospheric”-like), or (ii) a doubly-broken power-law spectrum with the low-energy spectral slope approaching the slow cooling limit. Both features can be obtained while maintaining high overall radiative efficiency without any fine-tuning of the physical conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monthly Notices of the Royal Astronomical Society: Letters
Monthly Notices of the Royal Astronomical Society: Letters Earth and Planetary Sciences-Space and Planetary Science
CiteScore
8.80
自引率
0.00%
发文量
136
期刊介绍: For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.
期刊最新文献
A tight N/O–potential relation in star-forming galaxies Constraining fundamental constants with fast radio bursts: Unveiling the role of energy scale TeV afterglow from GRB 221009A: photohadronic origin? Emirical calibration for helium abundance determinations in active galactic nuclei One-sided Hα excess before the first pericentre passage in galaxy Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1