{"title":"分数阶帕斯捷尔纳克粘弹性地基无限大梁在移动荷载作用下的动力响应","authors":"Ti-Lei Ye, Ke-Zhen Yan","doi":"10.1142/s0219455424501451","DOIUrl":null,"url":null,"abstract":"In this paper, the dynamic response of an infinite Euler beam that was mounted on a fractional-order Pasternak viscoelastic foundation subjected to a moving point load was investigated. An analytical solution to the problem was derived using Fourier and Laplace transforms. Numerical results obtained by numerical Laplace inversion were analyzed to explore the impact of various parameters on the system’s response. The findings indicated that increasing system damping led to a decrease in maximum deflection and a more visible deformation hysteresis with an increase in fractional derivative orders. Additionally, all parameters of the foundation and shear layer were observed to have a significant effect on the deflection. The study confirmed that the fractional-order model predicted damping and dynamic deflection more accurately than the conventional integer-order foundation model. The research contributed to the understanding of the behavior of Euler beams mounted on viscoelastic foundations and provided valuable insights into the design of such systems.","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"31 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response of infinitely beam resting on a fractional Pasternak viscoelastic foundation subjected to moving load\",\"authors\":\"Ti-Lei Ye, Ke-Zhen Yan\",\"doi\":\"10.1142/s0219455424501451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the dynamic response of an infinite Euler beam that was mounted on a fractional-order Pasternak viscoelastic foundation subjected to a moving point load was investigated. An analytical solution to the problem was derived using Fourier and Laplace transforms. Numerical results obtained by numerical Laplace inversion were analyzed to explore the impact of various parameters on the system’s response. The findings indicated that increasing system damping led to a decrease in maximum deflection and a more visible deformation hysteresis with an increase in fractional derivative orders. Additionally, all parameters of the foundation and shear layer were observed to have a significant effect on the deflection. The study confirmed that the fractional-order model predicted damping and dynamic deflection more accurately than the conventional integer-order foundation model. The research contributed to the understanding of the behavior of Euler beams mounted on viscoelastic foundations and provided valuable insights into the design of such systems.\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455424501451\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219455424501451","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Dynamic response of infinitely beam resting on a fractional Pasternak viscoelastic foundation subjected to moving load
In this paper, the dynamic response of an infinite Euler beam that was mounted on a fractional-order Pasternak viscoelastic foundation subjected to a moving point load was investigated. An analytical solution to the problem was derived using Fourier and Laplace transforms. Numerical results obtained by numerical Laplace inversion were analyzed to explore the impact of various parameters on the system’s response. The findings indicated that increasing system damping led to a decrease in maximum deflection and a more visible deformation hysteresis with an increase in fractional derivative orders. Additionally, all parameters of the foundation and shear layer were observed to have a significant effect on the deflection. The study confirmed that the fractional-order model predicted damping and dynamic deflection more accurately than the conventional integer-order foundation model. The research contributed to the understanding of the behavior of Euler beams mounted on viscoelastic foundations and provided valuable insights into the design of such systems.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.