{"title":"磁致伸缩面片超材料板的动力学分析","authors":"Farzad Ebrahimi, Mehrdad Farajzadeh Ahari","doi":"10.1142/s0219455424501748","DOIUrl":null,"url":null,"abstract":"This study aims to control the vibrational behavior of an auxetic plate coated with magnetostrictive material. The kinematic relations of the plate, rested on a Winkler–Pasternak medium, are expressed based on the first-order shear deformation theory (FSDT). The governing equations are derived by employing the Hamilton’s principle and solved analytically by applying the Navier’s method. The effects of various parameters such as auxetic inclination angle, auxetic rib length, and feedback gain, on the control behavior of the system are monitored in detail. In order to exhibit the accuracy and validity of this study, our results are compared to those available in the literature. The results indicate that adding auxetic core to magnetostrictive plate results in increasing dimensionless natural frequency. The results obtained from this study can potentially contribute to the advancement of various applications such as the design and improvement of sensors, actuators, and vibration cancellation systems. Additionally, the obtained results could serve as a foundational basis for subsequent investigations.","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"27 4","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Analysis of Meta-Material Plates with Magnetostrictive Face Sheets\",\"authors\":\"Farzad Ebrahimi, Mehrdad Farajzadeh Ahari\",\"doi\":\"10.1142/s0219455424501748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to control the vibrational behavior of an auxetic plate coated with magnetostrictive material. The kinematic relations of the plate, rested on a Winkler–Pasternak medium, are expressed based on the first-order shear deformation theory (FSDT). The governing equations are derived by employing the Hamilton’s principle and solved analytically by applying the Navier’s method. The effects of various parameters such as auxetic inclination angle, auxetic rib length, and feedback gain, on the control behavior of the system are monitored in detail. In order to exhibit the accuracy and validity of this study, our results are compared to those available in the literature. The results indicate that adding auxetic core to magnetostrictive plate results in increasing dimensionless natural frequency. The results obtained from this study can potentially contribute to the advancement of various applications such as the design and improvement of sensors, actuators, and vibration cancellation systems. Additionally, the obtained results could serve as a foundational basis for subsequent investigations.\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\"27 4\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455424501748\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219455424501748","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Dynamic Analysis of Meta-Material Plates with Magnetostrictive Face Sheets
This study aims to control the vibrational behavior of an auxetic plate coated with magnetostrictive material. The kinematic relations of the plate, rested on a Winkler–Pasternak medium, are expressed based on the first-order shear deformation theory (FSDT). The governing equations are derived by employing the Hamilton’s principle and solved analytically by applying the Navier’s method. The effects of various parameters such as auxetic inclination angle, auxetic rib length, and feedback gain, on the control behavior of the system are monitored in detail. In order to exhibit the accuracy and validity of this study, our results are compared to those available in the literature. The results indicate that adding auxetic core to magnetostrictive plate results in increasing dimensionless natural frequency. The results obtained from this study can potentially contribute to the advancement of various applications such as the design and improvement of sensors, actuators, and vibration cancellation systems. Additionally, the obtained results could serve as a foundational basis for subsequent investigations.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.