{"title":"利用再生竹编面料开发环保口罩的潜力","authors":"Fareha Asim, Farhana Naeem, Shenela Naqvi","doi":"10.1108/prt-05-2023-0036","DOIUrl":null,"url":null,"abstract":"Purpose Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide. Design/methodology/approach Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 2 3 3 2 -mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 2 3 3 2 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures. Findings Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially. Originality/value This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.","PeriodicalId":20214,"journal":{"name":"Pigment & Resin Technology","volume":"7 2","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing the potential of regenerated bamboo knitted fabrics in development of eco-friendly masks\",\"authors\":\"Fareha Asim, Farhana Naeem, Shenela Naqvi\",\"doi\":\"10.1108/prt-05-2023-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide. Design/methodology/approach Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 2 3 3 2 -mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 2 3 3 2 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures. Findings Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially. Originality/value This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.\",\"PeriodicalId\":20214,\"journal\":{\"name\":\"Pigment & Resin Technology\",\"volume\":\"7 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment & Resin Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/prt-05-2023-0036\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment & Resin Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/prt-05-2023-0036","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Harnessing the potential of regenerated bamboo knitted fabrics in development of eco-friendly masks
Purpose Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide. Design/methodology/approach Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 2 3 3 2 -mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 2 3 3 2 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures. Findings Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially. Originality/value This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.
期刊介绍:
The journal looks at developments in: ■Adhesives and sealants ■Curing and coatings ■Wood coatings and preservatives ■Environmentally compliant coating systems and pigments ■Inks for food packaging ■Manufacturing machinery - reactors, mills mixing and dispersing equipment, pumps ■Packaging, labeling and storage ■Plus topical features and news on materials, coatings, industry people, conferences, books and so on ■Raw materials such as pigments, solvents, resins and chemicals ■Testing equipment and procedures