{"title":"建模基于概率的一维河床高程估算模型,考虑径流和泥沙相关因素的不确定性","authors":"Shiang-Jen Wu, Chia-Yuan Tsai, Keh-Chia Yeh","doi":"10.2166/nh.2023.097","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to develop a probabilistic model to quantify the reliability of estimating riverbed elevations due to the uncertainties in the runoff and sediment-related factors (named PM_MBEE_1D); the above uncertainties are quantified by reproducing a considerable number of runoff-related and sediment-related factors via the multivariate Monte Carlo simulation approach. Using a sizeable number of simulated uncertainty factors, the proposed PM_MBEE_1D model is developed by coupling the rainfall–runoff model (SAC-SMA) and 1D sediment transport simulation model (CCHE1D) with the uncertainty/risk analysis advanced first-order second-moment (AFOSM) method as well as the logistic regression analysis. Validated by the historical data in the Jhuosdhuei River watershed, the proposed PM_MBEE_1D model could efficiently and successfully capture the spatial and temporal changes in the estimated riverbed elevations (i.e., scouring and siltation) due to the uncertainties in the river runoff and sediment with a high accuracy (nearly 0.983). Also, using the proposed PM_MBEE_1D model with given runoff and sediment factors under a desired reliability, the probabilistic-based riverbed elevations could accordingly be estimated as a reference to watershed treatment and management plan.","PeriodicalId":13096,"journal":{"name":"Hydrology Research","volume":"45 4","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling probabilistic-based 1D riverbed elevation estimation model due to uncertainties in runoff and sediment-related factors\",\"authors\":\"Shiang-Jen Wu, Chia-Yuan Tsai, Keh-Chia Yeh\",\"doi\":\"10.2166/nh.2023.097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aims to develop a probabilistic model to quantify the reliability of estimating riverbed elevations due to the uncertainties in the runoff and sediment-related factors (named PM_MBEE_1D); the above uncertainties are quantified by reproducing a considerable number of runoff-related and sediment-related factors via the multivariate Monte Carlo simulation approach. Using a sizeable number of simulated uncertainty factors, the proposed PM_MBEE_1D model is developed by coupling the rainfall–runoff model (SAC-SMA) and 1D sediment transport simulation model (CCHE1D) with the uncertainty/risk analysis advanced first-order second-moment (AFOSM) method as well as the logistic regression analysis. Validated by the historical data in the Jhuosdhuei River watershed, the proposed PM_MBEE_1D model could efficiently and successfully capture the spatial and temporal changes in the estimated riverbed elevations (i.e., scouring and siltation) due to the uncertainties in the river runoff and sediment with a high accuracy (nearly 0.983). Also, using the proposed PM_MBEE_1D model with given runoff and sediment factors under a desired reliability, the probabilistic-based riverbed elevations could accordingly be estimated as a reference to watershed treatment and management plan.\",\"PeriodicalId\":13096,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\"45 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.097\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/nh.2023.097","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Modeling probabilistic-based 1D riverbed elevation estimation model due to uncertainties in runoff and sediment-related factors
Abstract This study aims to develop a probabilistic model to quantify the reliability of estimating riverbed elevations due to the uncertainties in the runoff and sediment-related factors (named PM_MBEE_1D); the above uncertainties are quantified by reproducing a considerable number of runoff-related and sediment-related factors via the multivariate Monte Carlo simulation approach. Using a sizeable number of simulated uncertainty factors, the proposed PM_MBEE_1D model is developed by coupling the rainfall–runoff model (SAC-SMA) and 1D sediment transport simulation model (CCHE1D) with the uncertainty/risk analysis advanced first-order second-moment (AFOSM) method as well as the logistic regression analysis. Validated by the historical data in the Jhuosdhuei River watershed, the proposed PM_MBEE_1D model could efficiently and successfully capture the spatial and temporal changes in the estimated riverbed elevations (i.e., scouring and siltation) due to the uncertainties in the river runoff and sediment with a high accuracy (nearly 0.983). Also, using the proposed PM_MBEE_1D model with given runoff and sediment factors under a desired reliability, the probabilistic-based riverbed elevations could accordingly be estimated as a reference to watershed treatment and management plan.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.