碳排放限制下机场客运线路定制优化

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS Systems Science & Control Engineering Pub Date : 2023-11-07 DOI:10.1080/21642583.2023.2276416
Song Liu, Shiyuan Feng, Yan Wang, Dennis Z. Yu, Shan Jiang, Xianting Ma, Yong Peng
{"title":"碳排放限制下机场客运线路定制优化","authors":"Song Liu, Shiyuan Feng, Yan Wang, Dennis Z. Yu, Shan Jiang, Xianting Ma, Yong Peng","doi":"10.1080/21642583.2023.2276416","DOIUrl":null,"url":null,"abstract":"In response to the challenge of optimizing customized passenger transport paths for airport connections while taking carbon emissions constraints into account, this paper proposes an optimization model that minimizes the total cost by addressing passenger time window constraints, determining optimal passenger transport paths, and optimizing factors like the number of drop-off stations and vehicle occupancy rates. The total cost comprises the operational expenses of customized passenger transport businesses and travel time costs per passenger. We develop an annealing genetic algorithm to solve the model and provide a case analysis. Our findings indicate that the algorithm and the model empower decision-makers to swiftly select passenger transport path schemes that minimize the total cost with their specific requirements.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customized passenger path optimization for airport connections under carbon emissions restrictions\",\"authors\":\"Song Liu, Shiyuan Feng, Yan Wang, Dennis Z. Yu, Shan Jiang, Xianting Ma, Yong Peng\",\"doi\":\"10.1080/21642583.2023.2276416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the challenge of optimizing customized passenger transport paths for airport connections while taking carbon emissions constraints into account, this paper proposes an optimization model that minimizes the total cost by addressing passenger time window constraints, determining optimal passenger transport paths, and optimizing factors like the number of drop-off stations and vehicle occupancy rates. The total cost comprises the operational expenses of customized passenger transport businesses and travel time costs per passenger. We develop an annealing genetic algorithm to solve the model and provide a case analysis. Our findings indicate that the algorithm and the model empower decision-makers to swiftly select passenger transport path schemes that minimize the total cost with their specific requirements.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2023.2276416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2023.2276416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对考虑碳排放约束的机场客运线路定制化优化问题,本文提出了一种通过解决乘客时间窗约束、确定最优客运路径、优化下落站数量和车辆占用率等因素实现总成本最小化的优化模型。总成本包括定制客运业务的运营费用和每位旅客的出行时间成本。我们开发了一种退火遗传算法来求解该模型,并提供了一个案例分析。研究结果表明,该算法和模型使决策者能够根据具体需求快速选择总成本最小的客运路径方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Customized passenger path optimization for airport connections under carbon emissions restrictions
In response to the challenge of optimizing customized passenger transport paths for airport connections while taking carbon emissions constraints into account, this paper proposes an optimization model that minimizes the total cost by addressing passenger time window constraints, determining optimal passenger transport paths, and optimizing factors like the number of drop-off stations and vehicle occupancy rates. The total cost comprises the operational expenses of customized passenger transport businesses and travel time costs per passenger. We develop an annealing genetic algorithm to solve the model and provide a case analysis. Our findings indicate that the algorithm and the model empower decision-makers to swiftly select passenger transport path schemes that minimize the total cost with their specific requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
期刊最新文献
MS-YOLOv5: a lightweight algorithm for strawberry ripeness detection based on deep learning Research on the operation of integrated energy microgrid based on cluster power sharing mechanism Low-frequency operation control method for medium-voltage high-capacity FC-MMC type frequency converter Customized passenger path optimization for airport connections under carbon emissions restrictions Nonlinear impact analysis of built environment on urban road traffic safety risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1