PO115

Miren Gaztañaga, Virginia Álvarez, Javier De Areba, Saadia Tremolada, Pino Alcántara, Elena Cerezo, Juan Antonio Corona, Anxela Doval, Fernando Puebla, Noelia Sanmamed, Manuel Gonzalo Vázquez
{"title":"PO115","authors":"Miren Gaztañaga, Virginia Álvarez, Javier De Areba, Saadia Tremolada, Pino Alcántara, Elena Cerezo, Juan Antonio Corona, Anxela Doval, Fernando Puebla, Noelia Sanmamed, Manuel Gonzalo Vázquez","doi":"10.1016/j.brachy.2023.06.216","DOIUrl":null,"url":null,"abstract":"Purpose Perioperative accelerated partial breast irradiation with multicatheter interstitial brachytherapy is an alternative to the postoperative option that offers advantages in terms of specificity and comfort for patients as it avoids a second procedure. Since the simulation CT scan is performed 48 hours after the intervention, immediate tissue changes as air gaps can occasionally be observed. To our knowledge, there is no literature published on this regard, so the aim of this study was to assess the impact of significant air gaps when planning and treating multicatheter perioperative breast cancer brachytherapy. Methods and Materials Two consecutive cases with air gaps > 6 cc were included. For each case, a planning CT scan was performed 48 hours after the surgical procedure (tumorectomy + catheter insertion). Treatment planning was performed according to the department protocol and administered in an ultra-fractionated scheme: 3 fractions of 745 cGy every 12 hours. A second CT scan was performed right after the last treatment fraction, before the catheter removal. The air gaps have been contoured in both pre and post-treatment CTs and their volumes have been compared. The scans have been fused and the dosimetric differences have been evaluated. A total of 13 catheters have been analyzed in both scans. Results A volume reduction (-10% and -30% for each case) has been observed in the post-treatment air gap. Of the 13 catheters compared in the CT scans fusion, the catheter position displacement inside CTV was ≤ 1.5 mm in 12 of them (median displacement 1 mm), with one catheter displaced 2.7 mm in the post-treatment CT. Mean CTVD90 and V100 variation in the pre and post-treatment scans were -1.5 and -1.7% respectively. Dose variations in surrounding organs were: Skin Dmax -10 and -3%, Ribs Dmax +15 and +15% and Ipsilateral Lung Dmax +12 and +13%. Dosimetric disparities did not exceed tolerance and coverage limits in any case. Conclusions With two cases analyzed, the volumetric reduction of the air gaps does not seem to affect the geometry of the implants, with most of the catheters remaining stable in their initial position. Discrete changes in the coverage parameters and doses to OARs fulfill the pre-established constraints. The confirmation of these results as well as the clinical relevance of these changes has to be examined in future studies including more patients. Perioperative accelerated partial breast irradiation with multicatheter interstitial brachytherapy is an alternative to the postoperative option that offers advantages in terms of specificity and comfort for patients as it avoids a second procedure. Since the simulation CT scan is performed 48 hours after the intervention, immediate tissue changes as air gaps can occasionally be observed. To our knowledge, there is no literature published on this regard, so the aim of this study was to assess the impact of significant air gaps when planning and treating multicatheter perioperative breast cancer brachytherapy. Two consecutive cases with air gaps > 6 cc were included. For each case, a planning CT scan was performed 48 hours after the surgical procedure (tumorectomy + catheter insertion). Treatment planning was performed according to the department protocol and administered in an ultra-fractionated scheme: 3 fractions of 745 cGy every 12 hours. A second CT scan was performed right after the last treatment fraction, before the catheter removal. The air gaps have been contoured in both pre and post-treatment CTs and their volumes have been compared. The scans have been fused and the dosimetric differences have been evaluated. A total of 13 catheters have been analyzed in both scans. A volume reduction (-10% and -30% for each case) has been observed in the post-treatment air gap. Of the 13 catheters compared in the CT scans fusion, the catheter position displacement inside CTV was ≤ 1.5 mm in 12 of them (median displacement 1 mm), with one catheter displaced 2.7 mm in the post-treatment CT. Mean CTVD90 and V100 variation in the pre and post-treatment scans were -1.5 and -1.7% respectively. Dose variations in surrounding organs were: Skin Dmax -10 and -3%, Ribs Dmax +15 and +15% and Ipsilateral Lung Dmax +12 and +13%. Dosimetric disparities did not exceed tolerance and coverage limits in any case. With two cases analyzed, the volumetric reduction of the air gaps does not seem to affect the geometry of the implants, with most of the catheters remaining stable in their initial position. Discrete changes in the coverage parameters and doses to OARs fulfill the pre-established constraints. The confirmation of these results as well as the clinical relevance of these changes has to be examined in future studies including more patients.","PeriodicalId":93914,"journal":{"name":"Brachytherapy","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PO115\",\"authors\":\"Miren Gaztañaga, Virginia Álvarez, Javier De Areba, Saadia Tremolada, Pino Alcántara, Elena Cerezo, Juan Antonio Corona, Anxela Doval, Fernando Puebla, Noelia Sanmamed, Manuel Gonzalo Vázquez\",\"doi\":\"10.1016/j.brachy.2023.06.216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Perioperative accelerated partial breast irradiation with multicatheter interstitial brachytherapy is an alternative to the postoperative option that offers advantages in terms of specificity and comfort for patients as it avoids a second procedure. Since the simulation CT scan is performed 48 hours after the intervention, immediate tissue changes as air gaps can occasionally be observed. To our knowledge, there is no literature published on this regard, so the aim of this study was to assess the impact of significant air gaps when planning and treating multicatheter perioperative breast cancer brachytherapy. Methods and Materials Two consecutive cases with air gaps > 6 cc were included. For each case, a planning CT scan was performed 48 hours after the surgical procedure (tumorectomy + catheter insertion). Treatment planning was performed according to the department protocol and administered in an ultra-fractionated scheme: 3 fractions of 745 cGy every 12 hours. A second CT scan was performed right after the last treatment fraction, before the catheter removal. The air gaps have been contoured in both pre and post-treatment CTs and their volumes have been compared. The scans have been fused and the dosimetric differences have been evaluated. A total of 13 catheters have been analyzed in both scans. Results A volume reduction (-10% and -30% for each case) has been observed in the post-treatment air gap. Of the 13 catheters compared in the CT scans fusion, the catheter position displacement inside CTV was ≤ 1.5 mm in 12 of them (median displacement 1 mm), with one catheter displaced 2.7 mm in the post-treatment CT. Mean CTVD90 and V100 variation in the pre and post-treatment scans were -1.5 and -1.7% respectively. Dose variations in surrounding organs were: Skin Dmax -10 and -3%, Ribs Dmax +15 and +15% and Ipsilateral Lung Dmax +12 and +13%. Dosimetric disparities did not exceed tolerance and coverage limits in any case. Conclusions With two cases analyzed, the volumetric reduction of the air gaps does not seem to affect the geometry of the implants, with most of the catheters remaining stable in their initial position. Discrete changes in the coverage parameters and doses to OARs fulfill the pre-established constraints. The confirmation of these results as well as the clinical relevance of these changes has to be examined in future studies including more patients. Perioperative accelerated partial breast irradiation with multicatheter interstitial brachytherapy is an alternative to the postoperative option that offers advantages in terms of specificity and comfort for patients as it avoids a second procedure. Since the simulation CT scan is performed 48 hours after the intervention, immediate tissue changes as air gaps can occasionally be observed. To our knowledge, there is no literature published on this regard, so the aim of this study was to assess the impact of significant air gaps when planning and treating multicatheter perioperative breast cancer brachytherapy. Two consecutive cases with air gaps > 6 cc were included. For each case, a planning CT scan was performed 48 hours after the surgical procedure (tumorectomy + catheter insertion). Treatment planning was performed according to the department protocol and administered in an ultra-fractionated scheme: 3 fractions of 745 cGy every 12 hours. A second CT scan was performed right after the last treatment fraction, before the catheter removal. The air gaps have been contoured in both pre and post-treatment CTs and their volumes have been compared. The scans have been fused and the dosimetric differences have been evaluated. A total of 13 catheters have been analyzed in both scans. A volume reduction (-10% and -30% for each case) has been observed in the post-treatment air gap. Of the 13 catheters compared in the CT scans fusion, the catheter position displacement inside CTV was ≤ 1.5 mm in 12 of them (median displacement 1 mm), with one catheter displaced 2.7 mm in the post-treatment CT. Mean CTVD90 and V100 variation in the pre and post-treatment scans were -1.5 and -1.7% respectively. Dose variations in surrounding organs were: Skin Dmax -10 and -3%, Ribs Dmax +15 and +15% and Ipsilateral Lung Dmax +12 and +13%. Dosimetric disparities did not exceed tolerance and coverage limits in any case. With two cases analyzed, the volumetric reduction of the air gaps does not seem to affect the geometry of the implants, with most of the catheters remaining stable in their initial position. Discrete changes in the coverage parameters and doses to OARs fulfill the pre-established constraints. The confirmation of these results as well as the clinical relevance of these changes has to be examined in future studies including more patients.\",\"PeriodicalId\":93914,\"journal\":{\"name\":\"Brachytherapy\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brachytherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.brachy.2023.06.216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brachytherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.brachy.2023.06.216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的围手术期多导管间质近距离加速乳房部分照射是术后的一种替代选择,它在特异性和舒适性方面为患者提供了优势,因为它避免了第二次手术。由于模拟CT扫描是在干预后48小时进行的,因此偶尔可以观察到立即的组织变化,如气隙。据我们所知,在这方面没有文献发表,因此本研究的目的是评估在多导管乳腺癌围手术期近距离放疗计划和治疗时显著气隙的影响。方法与材料连续2例气隙大于6cc的病例。对于每个病例,在手术(肿瘤切除+导管插入)后48小时进行计划CT扫描。治疗计划按照科室方案执行,采用超分馏方案:每12小时进行3次745 cGy的分馏。第二次CT扫描是在最后一次治疗后,导管取出之前进行的。在治疗前和治疗后的ct中对气隙进行了轮廓,并对其体积进行了比较。扫描结果已经融合并评估了剂量学差异。两次扫描共分析了13根导管。结果观察到治疗后的气隙体积缩小(-10%和-30%)。CT扫描融合比较13根导管,其中12根导管在CTV内位置移位≤1.5 mm(中位移位1mm), 1根导管在治疗后CT上移位2.7 mm。治疗前后扫描CTVD90和V100的平均变化分别为-1.5和-1.7%。周围器官的剂量变化为:皮肤Dmax为-10和-3%,肋骨Dmax为+15和+15%,同侧肺Dmax为+12和+13%。剂量学差异在任何情况下都没有超过容忍和覆盖限度。结论通过对两例病例的分析,气隙的体积缩小似乎不影响种植体的几何形状,大多数导管在初始位置保持稳定。覆盖参数和桨叶剂量的离散变化满足预先建立的约束条件。这些结果的确认以及这些变化的临床相关性必须在未来的研究中进行检查,包括更多的患者。多导管间质近距离加速乳房围手术期局部照射是术后的一种替代选择,它在特异性和舒适性方面为患者提供了优势,因为它避免了第二次手术。由于模拟CT扫描是在干预后48小时进行的,因此偶尔可以观察到立即的组织变化,如气隙。据我们所知,在这方面没有文献发表,因此本研究的目的是评估在多导管乳腺癌围手术期近距离放疗计划和治疗时显著气隙的影响。连续两例气隙> 6cc。对于每个病例,在手术(肿瘤切除+导管插入)后48小时进行计划CT扫描。治疗计划按照科室方案执行,采用超分馏方案:每12小时进行3次745 cGy的分馏。第二次CT扫描是在最后一次治疗后,导管取出之前进行的。在治疗前和治疗后的ct中对气隙进行了轮廓,并对其体积进行了比较。扫描结果已经融合并评估了剂量学差异。两次扫描共分析了13根导管。在治疗后的气隙中观察到体积减少(每种病例-10%和-30%)。CT扫描融合比较13根导管,其中12根导管在CTV内位置移位≤1.5 mm(中位移位1mm), 1根导管在治疗后CT上移位2.7 mm。治疗前后扫描CTVD90和V100的平均变化分别为-1.5和-1.7%。周围器官的剂量变化为:皮肤Dmax为-10和-3%,肋骨Dmax为+15和+15%,同侧肺Dmax为+12和+13%。剂量学差异在任何情况下都没有超过容忍和覆盖限度。通过对两个病例的分析,气隙的体积减小似乎并不影响植入物的几何形状,大多数导管在其初始位置保持稳定。覆盖参数和桨叶剂量的离散变化满足预先建立的约束条件。这些结果的确认以及这些变化的临床相关性必须在未来的研究中进行检查,包括更多的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PO115
Purpose Perioperative accelerated partial breast irradiation with multicatheter interstitial brachytherapy is an alternative to the postoperative option that offers advantages in terms of specificity and comfort for patients as it avoids a second procedure. Since the simulation CT scan is performed 48 hours after the intervention, immediate tissue changes as air gaps can occasionally be observed. To our knowledge, there is no literature published on this regard, so the aim of this study was to assess the impact of significant air gaps when planning and treating multicatheter perioperative breast cancer brachytherapy. Methods and Materials Two consecutive cases with air gaps > 6 cc were included. For each case, a planning CT scan was performed 48 hours after the surgical procedure (tumorectomy + catheter insertion). Treatment planning was performed according to the department protocol and administered in an ultra-fractionated scheme: 3 fractions of 745 cGy every 12 hours. A second CT scan was performed right after the last treatment fraction, before the catheter removal. The air gaps have been contoured in both pre and post-treatment CTs and their volumes have been compared. The scans have been fused and the dosimetric differences have been evaluated. A total of 13 catheters have been analyzed in both scans. Results A volume reduction (-10% and -30% for each case) has been observed in the post-treatment air gap. Of the 13 catheters compared in the CT scans fusion, the catheter position displacement inside CTV was ≤ 1.5 mm in 12 of them (median displacement 1 mm), with one catheter displaced 2.7 mm in the post-treatment CT. Mean CTVD90 and V100 variation in the pre and post-treatment scans were -1.5 and -1.7% respectively. Dose variations in surrounding organs were: Skin Dmax -10 and -3%, Ribs Dmax +15 and +15% and Ipsilateral Lung Dmax +12 and +13%. Dosimetric disparities did not exceed tolerance and coverage limits in any case. Conclusions With two cases analyzed, the volumetric reduction of the air gaps does not seem to affect the geometry of the implants, with most of the catheters remaining stable in their initial position. Discrete changes in the coverage parameters and doses to OARs fulfill the pre-established constraints. The confirmation of these results as well as the clinical relevance of these changes has to be examined in future studies including more patients. Perioperative accelerated partial breast irradiation with multicatheter interstitial brachytherapy is an alternative to the postoperative option that offers advantages in terms of specificity and comfort for patients as it avoids a second procedure. Since the simulation CT scan is performed 48 hours after the intervention, immediate tissue changes as air gaps can occasionally be observed. To our knowledge, there is no literature published on this regard, so the aim of this study was to assess the impact of significant air gaps when planning and treating multicatheter perioperative breast cancer brachytherapy. Two consecutive cases with air gaps > 6 cc were included. For each case, a planning CT scan was performed 48 hours after the surgical procedure (tumorectomy + catheter insertion). Treatment planning was performed according to the department protocol and administered in an ultra-fractionated scheme: 3 fractions of 745 cGy every 12 hours. A second CT scan was performed right after the last treatment fraction, before the catheter removal. The air gaps have been contoured in both pre and post-treatment CTs and their volumes have been compared. The scans have been fused and the dosimetric differences have been evaluated. A total of 13 catheters have been analyzed in both scans. A volume reduction (-10% and -30% for each case) has been observed in the post-treatment air gap. Of the 13 catheters compared in the CT scans fusion, the catheter position displacement inside CTV was ≤ 1.5 mm in 12 of them (median displacement 1 mm), with one catheter displaced 2.7 mm in the post-treatment CT. Mean CTVD90 and V100 variation in the pre and post-treatment scans were -1.5 and -1.7% respectively. Dose variations in surrounding organs were: Skin Dmax -10 and -3%, Ribs Dmax +15 and +15% and Ipsilateral Lung Dmax +12 and +13%. Dosimetric disparities did not exceed tolerance and coverage limits in any case. With two cases analyzed, the volumetric reduction of the air gaps does not seem to affect the geometry of the implants, with most of the catheters remaining stable in their initial position. Discrete changes in the coverage parameters and doses to OARs fulfill the pre-established constraints. The confirmation of these results as well as the clinical relevance of these changes has to be examined in future studies including more patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From patient to pioneer: The inspiring journey of Dr. Brian Moran. Learning curve and proficiency assessment for gynecological brachytherapy amongst radiation oncology trainees in India: Results from a prospective study. A retrospective study on ruthenium-106 and strontium-90 eye-plaques treatment for retinoblastoma: 16-years clinical experience. The influence of time and implants in high-dose rate image-guided adaptive brachytherapy for locally advanced cervical cancer. Early outcomes following local salvage treatment with MRI-assisted low-dose rate brachytherapy (MARS) for MRI-visible postsurgical bed recurrences and focal intraprostatic recurrences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1