在多重测试中,e值为非归一化权重

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-09-15 DOI:10.1093/biomet/asad057
Nikolaos Ignatiadis, Ruodu Wang, Aaditya Ramdas
{"title":"在多重测试中,e值为非归一化权重","authors":"Nikolaos Ignatiadis, Ruodu Wang, Aaditya Ramdas","doi":"10.1093/biomet/asad057","DOIUrl":null,"url":null,"abstract":"Summary We study how to combine p-values and e-values, and design multiple testing procedures where both p-values and e-values are available for every hypothesis. Our results provide a new perspective on multiple testing with data-driven weights: while standard weighted multiple testing methods require the weights to deterministically add up to the number of hypotheses being tested, we show that this normalization is not required when the weights are e-values that are independent of the p-values. Such e-values can be obtained in meta-analysis where a primary dataset is used to compute p-values, and an independent secondary dataset is used to compute e-values. Going beyond meta-analysis, we showcase settings wherein independent e-values and p-values can be constructed on a single dataset itself. Our procedures can result in a substantial increase in power, especially if the non-null hypotheses have e-values much larger than one.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"E-values as unnormalized weights in multiple testing\",\"authors\":\"Nikolaos Ignatiadis, Ruodu Wang, Aaditya Ramdas\",\"doi\":\"10.1093/biomet/asad057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We study how to combine p-values and e-values, and design multiple testing procedures where both p-values and e-values are available for every hypothesis. Our results provide a new perspective on multiple testing with data-driven weights: while standard weighted multiple testing methods require the weights to deterministically add up to the number of hypotheses being tested, we show that this normalization is not required when the weights are e-values that are independent of the p-values. Such e-values can be obtained in meta-analysis where a primary dataset is used to compute p-values, and an independent secondary dataset is used to compute e-values. Going beyond meta-analysis, we showcase settings wherein independent e-values and p-values can be constructed on a single dataset itself. Our procedures can result in a substantial increase in power, especially if the non-null hypotheses have e-values much larger than one.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad057\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad057","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了如何结合p值和e值,并设计了多个检验程序,其中p值和e值对于每个假设都是可用的。我们的结果为使用数据驱动的权重进行多重测试提供了一个新的视角:虽然标准加权多重测试方法要求权重确定性地与被测试的假设数量相加,但我们表明,当权重是独立于p值的e值时,不需要这种归一化。这样的e值可以在meta分析中获得,其中使用主数据集计算p值,使用独立的辅助数据集计算e值。在meta分析之外,我们展示了可以在单个数据集本身上构建独立e值和p值的设置。我们的程序可以导致功率的大幅增加,特别是如果非零假设的e值远大于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E-values as unnormalized weights in multiple testing
Summary We study how to combine p-values and e-values, and design multiple testing procedures where both p-values and e-values are available for every hypothesis. Our results provide a new perspective on multiple testing with data-driven weights: while standard weighted multiple testing methods require the weights to deterministically add up to the number of hypotheses being tested, we show that this normalization is not required when the weights are e-values that are independent of the p-values. Such e-values can be obtained in meta-analysis where a primary dataset is used to compute p-values, and an independent secondary dataset is used to compute e-values. Going beyond meta-analysis, we showcase settings wherein independent e-values and p-values can be constructed on a single dataset itself. Our procedures can result in a substantial increase in power, especially if the non-null hypotheses have e-values much larger than one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1