使用新颖的仿生模块化神经网络预测外汇波动

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data and Cognitive Computing Pub Date : 2023-09-15 DOI:10.3390/bdcc7030152
Christos Bormpotsis, Mohamed Sedky, Asma Patel
{"title":"使用新颖的仿生模块化神经网络预测外汇波动","authors":"Christos Bormpotsis, Mohamed Sedky, Asma Patel","doi":"10.3390/bdcc7030152","DOIUrl":null,"url":null,"abstract":"In the realm of foreign exchange (Forex) market predictions, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been commonly employed. However, these models often exhibit instability due to vulnerability to data perturbations attributed to their monolithic architecture. Hence, this study proposes a novel neuroscience-informed modular network that harnesses closing prices and sentiments from Yahoo Finance and Twitter APIs. Compared to monolithic methods, the objective is to advance the effectiveness of predicting price fluctuations in Euro to British Pound Sterling (EUR/GBP). The proposed model offers a unique methodology based on a reinvigorated modular CNN, replacing pooling layers with orthogonal kernel initialisation RNNs coupled with Monte Carlo Dropout (MCoRNNMCD). It integrates two pivotal modules: a convolutional simple RNN and a convolutional Gated Recurrent Unit (GRU). These modules incorporate orthogonal kernel initialisation and Monte Carlo Dropout techniques to mitigate overfitting, assessing each module’s uncertainty. The synthesis of these parallel feature extraction modules culminates in a three-layer Artificial Neural Network (ANN) decision-making module. Established on objective metrics like the Mean Square Error (MSE), rigorous evaluation underscores the proposed MCoRNNMCD–ANN’s exceptional performance. MCoRNNMCD–ANN surpasses single CNNs, LSTMs, GRUs, and the state-of-the-art hybrid BiCuDNNLSTM, CLSTM, CNN–LSTM, and LSTM–GRU in predicting hourly EUR/GBP closing price fluctuations.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":"20 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Forex Currency Fluctuations Using a Novel Bio-Inspired Modular Neural Network\",\"authors\":\"Christos Bormpotsis, Mohamed Sedky, Asma Patel\",\"doi\":\"10.3390/bdcc7030152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of foreign exchange (Forex) market predictions, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been commonly employed. However, these models often exhibit instability due to vulnerability to data perturbations attributed to their monolithic architecture. Hence, this study proposes a novel neuroscience-informed modular network that harnesses closing prices and sentiments from Yahoo Finance and Twitter APIs. Compared to monolithic methods, the objective is to advance the effectiveness of predicting price fluctuations in Euro to British Pound Sterling (EUR/GBP). The proposed model offers a unique methodology based on a reinvigorated modular CNN, replacing pooling layers with orthogonal kernel initialisation RNNs coupled with Monte Carlo Dropout (MCoRNNMCD). It integrates two pivotal modules: a convolutional simple RNN and a convolutional Gated Recurrent Unit (GRU). These modules incorporate orthogonal kernel initialisation and Monte Carlo Dropout techniques to mitigate overfitting, assessing each module’s uncertainty. The synthesis of these parallel feature extraction modules culminates in a three-layer Artificial Neural Network (ANN) decision-making module. Established on objective metrics like the Mean Square Error (MSE), rigorous evaluation underscores the proposed MCoRNNMCD–ANN’s exceptional performance. MCoRNNMCD–ANN surpasses single CNNs, LSTMs, GRUs, and the state-of-the-art hybrid BiCuDNNLSTM, CLSTM, CNN–LSTM, and LSTM–GRU in predicting hourly EUR/GBP closing price fluctuations.\",\"PeriodicalId\":36397,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc7030152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7030152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在外汇市场预测领域,卷积神经网络(cnn)和循环神经网络(rnn)已被广泛使用。然而,这些模型往往表现出不稳定性,因为它们的整体架构容易受到数据扰动的影响。因此,本研究提出了一种新颖的神经科学模块化网络,利用雅虎财经和Twitter api的收盘价和情绪。与单一方法相比,目标是提高预测欧元对英镑(EUR/GBP)价格波动的有效性。所提出的模型提供了一种基于重新激活的模块化CNN的独特方法,用正交核初始化rnn和蒙特卡罗Dropout (MCoRNNMCD)替换池化层。它集成了两个关键模块:卷积简单RNN和卷积门控循环单元(GRU)。这些模块结合了正交核初始化和蒙特卡罗Dropout技术来减轻过拟合,评估每个模块的不确定性。这些并行特征提取模块的综合最终形成一个三层人工神经网络(ANN)决策模块。在均方误差(MSE)等客观指标的基础上,通过严格的评估,强调了所提出的MCoRNNMCD-ANN的卓越性能。在预测欧元/英镑每小时收盘价波动方面,MCoRNNMCD-ANN超过了单一的cnn、lstm、gru,以及最先进的混合BiCuDNNLSTM、CLSTM、CNN-LSTM和LSTM-GRU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Forex Currency Fluctuations Using a Novel Bio-Inspired Modular Neural Network
In the realm of foreign exchange (Forex) market predictions, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been commonly employed. However, these models often exhibit instability due to vulnerability to data perturbations attributed to their monolithic architecture. Hence, this study proposes a novel neuroscience-informed modular network that harnesses closing prices and sentiments from Yahoo Finance and Twitter APIs. Compared to monolithic methods, the objective is to advance the effectiveness of predicting price fluctuations in Euro to British Pound Sterling (EUR/GBP). The proposed model offers a unique methodology based on a reinvigorated modular CNN, replacing pooling layers with orthogonal kernel initialisation RNNs coupled with Monte Carlo Dropout (MCoRNNMCD). It integrates two pivotal modules: a convolutional simple RNN and a convolutional Gated Recurrent Unit (GRU). These modules incorporate orthogonal kernel initialisation and Monte Carlo Dropout techniques to mitigate overfitting, assessing each module’s uncertainty. The synthesis of these parallel feature extraction modules culminates in a three-layer Artificial Neural Network (ANN) decision-making module. Established on objective metrics like the Mean Square Error (MSE), rigorous evaluation underscores the proposed MCoRNNMCD–ANN’s exceptional performance. MCoRNNMCD–ANN surpasses single CNNs, LSTMs, GRUs, and the state-of-the-art hybrid BiCuDNNLSTM, CLSTM, CNN–LSTM, and LSTM–GRU in predicting hourly EUR/GBP closing price fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
期刊最新文献
A Survey of Incremental Deep Learning for Defect Detection in Manufacturing BNMI-DINA: A Bayesian Cognitive Diagnosis Model for Enhanced Personalized Learning Semantic Similarity of Common Verbal Expressions in Older Adults through a Pre-Trained Model Knowledge-Based and Generative-AI-Driven Pedagogical Conversational Agents: A Comparative Study of Grice’s Cooperative Principles and Trust Distributed Bayesian Inference for Large-Scale IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1