连续潮流迭代中的收敛行为分析及发散指标的推导

Agron Bislimi
{"title":"连续潮流迭代中的收敛行为分析及发散指标的推导","authors":"Agron Bislimi","doi":"10.15866/irecon.v11i3.23591","DOIUrl":null,"url":null,"abstract":"This research aims to achieve the following objectives: an analysis of the convergence behavior of the correction step within the iterations of the Continuation Power Flow (CPF), and the development of a divergence indicator. Specifically, the research delves into examining the numerical stability and convergence properties of the Continuation Power Flow Method (CPFM). Subsequently, a defined convergence area for the correction iterations is established. This definition enables an early estimation at the onset of the correction step regarding the likelihood of convergence. Additionally, it helps determine whether actions to enhance convergence (such as reducing the predictor step size) are necessary. The practical applications of the convergence area are exemplified using a few practical examples. The introduced convergence area concept proves effective in identifying potential divergence of the correction process, particularly during the critical phase of CPF analysis - even as early as the first iteration. Hence, if the corrector demonstrates a tendency to diverge, corrective actions can be implemented in advance before expending unnecessary computational time on iterations that diverge. Critical phase of CPF analysis involves the lower PV curve processing at the Lambda continuation parameter. Here, the concept of \"area of convergence\" serves as a valuable tool for stabilizing the corrector.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Convergence Behavior and Derivation of Divergence Indicator in Continuation Power Flow Iterations\",\"authors\":\"Agron Bislimi\",\"doi\":\"10.15866/irecon.v11i3.23591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to achieve the following objectives: an analysis of the convergence behavior of the correction step within the iterations of the Continuation Power Flow (CPF), and the development of a divergence indicator. Specifically, the research delves into examining the numerical stability and convergence properties of the Continuation Power Flow Method (CPFM). Subsequently, a defined convergence area for the correction iterations is established. This definition enables an early estimation at the onset of the correction step regarding the likelihood of convergence. Additionally, it helps determine whether actions to enhance convergence (such as reducing the predictor step size) are necessary. The practical applications of the convergence area are exemplified using a few practical examples. The introduced convergence area concept proves effective in identifying potential divergence of the correction process, particularly during the critical phase of CPF analysis - even as early as the first iteration. Hence, if the corrector demonstrates a tendency to diverge, corrective actions can be implemented in advance before expending unnecessary computational time on iterations that diverge. Critical phase of CPF analysis involves the lower PV curve processing at the Lambda continuation parameter. Here, the concept of \\\"area of convergence\\\" serves as a valuable tool for stabilizing the corrector.\",\"PeriodicalId\":37583,\"journal\":{\"name\":\"International Journal on Energy Conversion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/irecon.v11i3.23591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/irecon.v11i3.23591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在分析连续潮流(CPF)迭代过程中修正步骤的收敛行为,并建立发散指标。研究了连续潮流法(CPFM)的数值稳定性和收敛性。随后,建立了修正迭代的收敛区域。这个定义能够在校正步骤开始时对收敛的可能性进行早期估计。此外,它有助于确定是否有必要采取行动来增强收敛性(例如减少预测器步长)。通过几个实例说明了收敛区域的实际应用。引入的收敛区域概念证明在识别校正过程的潜在偏差方面是有效的,特别是在CPF分析的关键阶段-甚至早在第一次迭代。因此,如果校正器显示出发散的趋势,那么可以在在发散的迭代上花费不必要的计算时间之前提前实现校正动作。CPF分析的关键阶段涉及Lambda延拓参数下PV曲线的处理。这里,“收敛区域”的概念是稳定校正器的一个有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Convergence Behavior and Derivation of Divergence Indicator in Continuation Power Flow Iterations
This research aims to achieve the following objectives: an analysis of the convergence behavior of the correction step within the iterations of the Continuation Power Flow (CPF), and the development of a divergence indicator. Specifically, the research delves into examining the numerical stability and convergence properties of the Continuation Power Flow Method (CPFM). Subsequently, a defined convergence area for the correction iterations is established. This definition enables an early estimation at the onset of the correction step regarding the likelihood of convergence. Additionally, it helps determine whether actions to enhance convergence (such as reducing the predictor step size) are necessary. The practical applications of the convergence area are exemplified using a few practical examples. The introduced convergence area concept proves effective in identifying potential divergence of the correction process, particularly during the critical phase of CPF analysis - even as early as the first iteration. Hence, if the corrector demonstrates a tendency to diverge, corrective actions can be implemented in advance before expending unnecessary computational time on iterations that diverge. Critical phase of CPF analysis involves the lower PV curve processing at the Lambda continuation parameter. Here, the concept of "area of convergence" serves as a valuable tool for stabilizing the corrector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal on Energy Conversion
International Journal on Energy Conversion Energy-Nuclear Energy and Engineering
CiteScore
3.30
自引率
0.00%
发文量
8
期刊介绍: The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.
期刊最新文献
Analysis of Convergence Behavior and Derivation of Divergence Indicator in Continuation Power Flow Iterations Energy Analysis of a H2O-LiBr Absorption Cooling System Under the Climatic Conditions of Senegal Evaluation of the Economic, Environmental and Energy Performance of Generation Technologies for Use as Backup Sources The Experimental Study of Photovoltaic Performance Improvement Using Multiple Reflectors Inter-Turn Fault Resilient Controls of a PMSM-Based Tidal Stream Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1