基于离散元法的路基振动压实细观机理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.3934/era.2023358
Xin Gao, Hao Liu, Zhou Fang, Yang Zhang
{"title":"基于离散元法的路基振动压实细观机理","authors":"Xin Gao, Hao Liu, Zhou Fang, Yang Zhang","doi":"10.3934/era.2023358","DOIUrl":null,"url":null,"abstract":"<abstract> <p>The discrete element is an important tool for vibration compaction simulation from the microscopic viewpoint. The irregular particle model was established by the disc filling method, and the linear contact model with anti-rolling was selected to reflect the contact characteristics between the particles, so as to establish the simulation model of subgrade vibratory compaction. Based on this model, the stress characteristics of the area below the center of the vibrating wheel and the surface area of the soil were studied, and the principle of vibratory compaction was discussed. The results show that the distribution of vertical stresses below the center of drum basically presents a decreasing trend in the depth range during vibration, with the stress amplitude of the lower structure increasing and the stress magnitude of the upper structure decreasing. The distribution of horizontal stresses in the area below the center of the vibrating wheel is similar to the stress distribution in the splitting test. The soil at the surface has an obvious pushing and squeezing effect, and the transmission distance of horizontal stresses is larger than that of vertical stresses. The soil at the surface is pushed and the horizontal stresses are transmitted at a greater distance than the vertical stresses, which, together with a certain degree of shear effect, causes a certain uplift deformation of the soil around the vibrating wheel. In general, the vibration compaction process is relatively consistent with the theory of repeated loading and the theory of alternating shear strain.</p> </abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic mechanism of subgrade vibration compaction based on discrete element method\",\"authors\":\"Xin Gao, Hao Liu, Zhou Fang, Yang Zhang\",\"doi\":\"10.3934/era.2023358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>The discrete element is an important tool for vibration compaction simulation from the microscopic viewpoint. The irregular particle model was established by the disc filling method, and the linear contact model with anti-rolling was selected to reflect the contact characteristics between the particles, so as to establish the simulation model of subgrade vibratory compaction. Based on this model, the stress characteristics of the area below the center of the vibrating wheel and the surface area of the soil were studied, and the principle of vibratory compaction was discussed. The results show that the distribution of vertical stresses below the center of drum basically presents a decreasing trend in the depth range during vibration, with the stress amplitude of the lower structure increasing and the stress magnitude of the upper structure decreasing. The distribution of horizontal stresses in the area below the center of the vibrating wheel is similar to the stress distribution in the splitting test. The soil at the surface has an obvious pushing and squeezing effect, and the transmission distance of horizontal stresses is larger than that of vertical stresses. The soil at the surface is pushed and the horizontal stresses are transmitted at a greater distance than the vertical stresses, which, together with a certain degree of shear effect, causes a certain uplift deformation of the soil around the vibrating wheel. In general, the vibration compaction process is relatively consistent with the theory of repeated loading and the theory of alternating shear strain.</p> </abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023358\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023358","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

& lt; abstract>从微观角度看,离散元是振动压实模拟的重要工具。采用圆盘填充法建立不规则颗粒模型,选择具有抗滚动的线性接触模型来反映颗粒之间的接触特性,从而建立路基振动压实仿真模型。在此基础上,研究了振动轮中心以下区域和土体表面积的应力特性,并对振动压实原理进行了探讨。结果表明:在振动深度范围内,鼓心以下垂直应力分布基本呈减小趋势,下部结构应力幅值增大,上部结构应力幅值减小;振动轮中心以下区域的水平应力分布与劈裂试验时的应力分布相似。地表土体具有明显的推挤作用,且水平应力的传递距离大于垂直应力的传递距离。表面土体受到推力作用,水平应力传递距离大于垂直应力,加之一定程度的剪切效应,使振动轮周围土体产生一定的上扬变形。总体而言,振动压实过程相对符合重复加载理论和交变剪切应变理论。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscopic mechanism of subgrade vibration compaction based on discrete element method

The discrete element is an important tool for vibration compaction simulation from the microscopic viewpoint. The irregular particle model was established by the disc filling method, and the linear contact model with anti-rolling was selected to reflect the contact characteristics between the particles, so as to establish the simulation model of subgrade vibratory compaction. Based on this model, the stress characteristics of the area below the center of the vibrating wheel and the surface area of the soil were studied, and the principle of vibratory compaction was discussed. The results show that the distribution of vertical stresses below the center of drum basically presents a decreasing trend in the depth range during vibration, with the stress amplitude of the lower structure increasing and the stress magnitude of the upper structure decreasing. The distribution of horizontal stresses in the area below the center of the vibrating wheel is similar to the stress distribution in the splitting test. The soil at the surface has an obvious pushing and squeezing effect, and the transmission distance of horizontal stresses is larger than that of vertical stresses. The soil at the surface is pushed and the horizontal stresses are transmitted at a greater distance than the vertical stresses, which, together with a certain degree of shear effect, causes a certain uplift deformation of the soil around the vibrating wheel. In general, the vibration compaction process is relatively consistent with the theory of repeated loading and the theory of alternating shear strain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1