测量来自受控和非受控来源的图片之间的差异,以促进目的地。深度学习方法

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Interactive Multimedia and Artificial Intelligence Pub Date : 2023-01-01 DOI:10.9781/ijimai.2023.10.003
Angel Diaz-Pacheco, Miguel A. Álvarez-Carmona, Ansel Y. Rodríguez-González, Hugo Carlos, Ramón Aranda
{"title":"测量来自受控和非受控来源的图片之间的差异,以促进目的地。深度学习方法","authors":"Angel Diaz-Pacheco, Miguel A. Álvarez-Carmona, Ansel Y. Rodríguez-González, Hugo Carlos, Ramón Aranda","doi":"10.9781/ijimai.2023.10.003","DOIUrl":null,"url":null,"abstract":"Promoting a destination is a major task for Destination Marketing Organizations (DMOs). Although DMOs control, to some extent, the information presented to travelers (controlled sources), there are other different sources of information (uncontrolled sources) that could project an unfavorable image of the destination. Measuring differences between information sources would help design strategies to mitigate negative factors. In this way, we propose a deep learning-based approach to automatically measure the changes between images from controlled and uncontrolled information sources. Our approach exempts experts from the time-consuming task of assessing enormous quantities of pictures to track changes. To our best knowledge, this work is the first work that focuses on this issue using technological paradigms. Notwithstanding this, our approach paves novel pathways to acquire strategic insights that can be harnessed for the augmentation of destination development, the refinement of recommendation systems, the analysis of online travel reviews, and myriad other pertinent domains.","PeriodicalId":48602,"journal":{"name":"International Journal of Interactive Multimedia and Artificial Intelligence","volume":"26 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Difference Between Pictures From Controlled and Uncontrolled Sources to Promote a Destination. A Deep Learning Approach\",\"authors\":\"Angel Diaz-Pacheco, Miguel A. Álvarez-Carmona, Ansel Y. Rodríguez-González, Hugo Carlos, Ramón Aranda\",\"doi\":\"10.9781/ijimai.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Promoting a destination is a major task for Destination Marketing Organizations (DMOs). Although DMOs control, to some extent, the information presented to travelers (controlled sources), there are other different sources of information (uncontrolled sources) that could project an unfavorable image of the destination. Measuring differences between information sources would help design strategies to mitigate negative factors. In this way, we propose a deep learning-based approach to automatically measure the changes between images from controlled and uncontrolled information sources. Our approach exempts experts from the time-consuming task of assessing enormous quantities of pictures to track changes. To our best knowledge, this work is the first work that focuses on this issue using technological paradigms. Notwithstanding this, our approach paves novel pathways to acquire strategic insights that can be harnessed for the augmentation of destination development, the refinement of recommendation systems, the analysis of online travel reviews, and myriad other pertinent domains.\",\"PeriodicalId\":48602,\"journal\":{\"name\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9781/ijimai.2023.10.003\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Multimedia and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2023.10.003","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

推广目的地是目的地营销组织(DMOs)的主要任务。虽然dmo在一定程度上控制了提供给旅行者的信息(受控来源),但还有其他不同的信息来源(不受控制的来源)可能会给目的地带来不利的形象。测量信息源之间的差异将有助于设计减轻负面因素的策略。通过这种方式,我们提出了一种基于深度学习的方法来自动测量来自受控和非受控信息源的图像之间的变化。我们的方法将专家从耗时的评估大量图片以跟踪变化的任务中解放出来。据我们所知,这项工作是第一个使用技术范式关注这个问题的工作。尽管如此,我们的方法为获取战略见解开辟了新的途径,这些见解可用于扩大目的地开发、完善推荐系统、分析在线旅游评论以及其他无数相关领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring the Difference Between Pictures From Controlled and Uncontrolled Sources to Promote a Destination. A Deep Learning Approach
Promoting a destination is a major task for Destination Marketing Organizations (DMOs). Although DMOs control, to some extent, the information presented to travelers (controlled sources), there are other different sources of information (uncontrolled sources) that could project an unfavorable image of the destination. Measuring differences between information sources would help design strategies to mitigate negative factors. In this way, we propose a deep learning-based approach to automatically measure the changes between images from controlled and uncontrolled information sources. Our approach exempts experts from the time-consuming task of assessing enormous quantities of pictures to track changes. To our best knowledge, this work is the first work that focuses on this issue using technological paradigms. Notwithstanding this, our approach paves novel pathways to acquire strategic insights that can be harnessed for the augmentation of destination development, the refinement of recommendation systems, the analysis of online travel reviews, and myriad other pertinent domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
11.10%
发文量
47
审稿时长
10 weeks
期刊最新文献
Consensus-Based Learning for MAS: Definition, Implementation and Integration in IVEs Development of an Intelligent Classifier Model for Denial of Service Attack Detection Pollutant Time Series Analysis for Improving Air-Quality in Smart Cities Using Large Language Models to Shape Social Robots’ Speech Problem Detection in the Edge of IoT Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1