强化天然气水合物合成的理论基础

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Environmental and Climate Technologies Pub Date : 2023-01-01 DOI:10.2478/rtuect-2023-0049
Bogdan Kutnyi, Anatoliy Pavlenko, Oleksandra Cherednikova
{"title":"强化天然气水合物合成的理论基础","authors":"Bogdan Kutnyi, Anatoliy Pavlenko, Oleksandra Cherednikova","doi":"10.2478/rtuect-2023-0049","DOIUrl":null,"url":null,"abstract":"Abstract The methods of industrial production of gas hydrates are considered, their problems are identified, and a list of factors that are decisive for the intensification of mass exchange processes is outlined. The prospective use of mass transfer devices with a dynamic interfacial surface for the synthesis of gas hydrates is substantiated. A mathematical model of hydrate formation on the surface of a water droplet moving in a gas flow is proposed. Digital solutions for various droplet sizes, velocities, gas pressures, water temperature, gas permeability of gas hydrate, and dynamics of hydrate formation over time were obtained. It was established that the main ways of intensification of the synthesis of gas hydrates are: obtaining smaller water droplets, maintaining the gas temperature at the level of 0 °С, increasing the gas pressure, and increasing the residence time of the droplet in the gas medium. Approximation formulas for calculating quantitative indicators of the influence of various factors on the formation of methane gas hydrate have been obtained. The analysis of the obtained results made it possible to establish promising directions for the optimization of equipment for the synthesis of gas hydrates.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Foundations of Gas Hydrate Synthesis Intensification\",\"authors\":\"Bogdan Kutnyi, Anatoliy Pavlenko, Oleksandra Cherednikova\",\"doi\":\"10.2478/rtuect-2023-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The methods of industrial production of gas hydrates are considered, their problems are identified, and a list of factors that are decisive for the intensification of mass exchange processes is outlined. The prospective use of mass transfer devices with a dynamic interfacial surface for the synthesis of gas hydrates is substantiated. A mathematical model of hydrate formation on the surface of a water droplet moving in a gas flow is proposed. Digital solutions for various droplet sizes, velocities, gas pressures, water temperature, gas permeability of gas hydrate, and dynamics of hydrate formation over time were obtained. It was established that the main ways of intensification of the synthesis of gas hydrates are: obtaining smaller water droplets, maintaining the gas temperature at the level of 0 °С, increasing the gas pressure, and increasing the residence time of the droplet in the gas medium. Approximation formulas for calculating quantitative indicators of the influence of various factors on the formation of methane gas hydrate have been obtained. The analysis of the obtained results made it possible to establish promising directions for the optimization of equipment for the synthesis of gas hydrates.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑了天然气水合物的工业生产方法,确定了它们存在的问题,并概述了质量交换过程加剧的决定性因素。证实了具有动态界面的传质装置在天然气水合物合成中的应用前景。提出了在气体流动中水滴表面形成水合物的数学模型。获得了不同液滴大小、速度、气体压力、水温、天然气水合物渗透率以及水合物形成动态随时间变化的数字解。确定了强化气体水合物合成的主要途径是:获得更小的水滴,将气体温度保持在0°С水平,提高气体压力,增加液滴在气体介质中的停留时间。得到了各种因素对甲烷天然气水合物形成影响定量指标的近似计算公式。通过对所得结果的分析,为天然气水合物合成设备的优化确定了有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical Foundations of Gas Hydrate Synthesis Intensification
Abstract The methods of industrial production of gas hydrates are considered, their problems are identified, and a list of factors that are decisive for the intensification of mass exchange processes is outlined. The prospective use of mass transfer devices with a dynamic interfacial surface for the synthesis of gas hydrates is substantiated. A mathematical model of hydrate formation on the surface of a water droplet moving in a gas flow is proposed. Digital solutions for various droplet sizes, velocities, gas pressures, water temperature, gas permeability of gas hydrate, and dynamics of hydrate formation over time were obtained. It was established that the main ways of intensification of the synthesis of gas hydrates are: obtaining smaller water droplets, maintaining the gas temperature at the level of 0 °С, increasing the gas pressure, and increasing the residence time of the droplet in the gas medium. Approximation formulas for calculating quantitative indicators of the influence of various factors on the formation of methane gas hydrate have been obtained. The analysis of the obtained results made it possible to establish promising directions for the optimization of equipment for the synthesis of gas hydrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
期刊最新文献
Sustaining a Mars Colony through Integration of Single-Cell Oil in Biological Life Support Systems Treatment of Water Containing Dyes Using Cellulose Aerogels Evaluating the Effectiveness of Agricultural and Forestry Policies in Achieving Environmental Goals Through Policy Documents Wood Ash Filter Material Characterization as a Carrier Material for Ex-Situ Biomethanation of Biogas in Biotrickling Filter Reactors A New Approach to Water Treatment: Investigating the Performance of Compact Particulate Matter Collector for Use in Compact Flue Gas Condenser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1