K. A. Bronnikov, S. V. Bolokhov, M. V. Skvortsova, K. Badalov, R. Ibadov
{"title":"标量张量引力中球对称时空的稳定性","authors":"K. A. Bronnikov, S. V. Bolokhov, M. V. Skvortsova, K. Badalov, R. Ibadov","doi":"10.1134/S0202289323040059","DOIUrl":null,"url":null,"abstract":"<p>We study the linear stability of vacuum static, spherically symmetric solutions to the gravitational field equations of the Bergmann–Wagoner–Nordtvedt class of scalar-tensor theories (STT) of gravity, restricting ourselves to nonphantom theories, massless scalar fields and configurations with positive Schwarzschild mass. We consider only small radial (monopole) perturbations as the ones most likely to cause an instability. The problem reduces to the same Schrödinger-like master equation as is known for perturbations of Fisher’s solution of general relativity (GR), but the corresponding boundary conditions that affect the final result of the study depend on the choice of the STT and a particular solution within it. The stability or instability conclusions are obtained for the Brans–Dicke, Barker and Schwinger STT as well as for GR nonminimally coupled to a scalar field with an arbitrary parameter <span>\\(\\xi\\)</span>.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Stability of Spherically Symmetric Space-Times in Scalar-Tensor Gravity\",\"authors\":\"K. A. Bronnikov, S. V. Bolokhov, M. V. Skvortsova, K. Badalov, R. Ibadov\",\"doi\":\"10.1134/S0202289323040059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the linear stability of vacuum static, spherically symmetric solutions to the gravitational field equations of the Bergmann–Wagoner–Nordtvedt class of scalar-tensor theories (STT) of gravity, restricting ourselves to nonphantom theories, massless scalar fields and configurations with positive Schwarzschild mass. We consider only small radial (monopole) perturbations as the ones most likely to cause an instability. The problem reduces to the same Schrödinger-like master equation as is known for perturbations of Fisher’s solution of general relativity (GR), but the corresponding boundary conditions that affect the final result of the study depend on the choice of the STT and a particular solution within it. The stability or instability conclusions are obtained for the Brans–Dicke, Barker and Schwinger STT as well as for GR nonminimally coupled to a scalar field with an arbitrary parameter <span>\\\\(\\\\xi\\\\)</span>.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289323040059\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289323040059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the Stability of Spherically Symmetric Space-Times in Scalar-Tensor Gravity
We study the linear stability of vacuum static, spherically symmetric solutions to the gravitational field equations of the Bergmann–Wagoner–Nordtvedt class of scalar-tensor theories (STT) of gravity, restricting ourselves to nonphantom theories, massless scalar fields and configurations with positive Schwarzschild mass. We consider only small radial (monopole) perturbations as the ones most likely to cause an instability. The problem reduces to the same Schrödinger-like master equation as is known for perturbations of Fisher’s solution of general relativity (GR), but the corresponding boundary conditions that affect the final result of the study depend on the choice of the STT and a particular solution within it. The stability or instability conclusions are obtained for the Brans–Dicke, Barker and Schwinger STT as well as for GR nonminimally coupled to a scalar field with an arbitrary parameter \(\xi\).
期刊介绍:
Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community