WaveCorr:深度强化学习与组合管理的排列不变卷积策略网络

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Letters Pub Date : 2023-11-01 DOI:10.1016/j.orl.2023.10.011
Saeed Marzban , Erick Delage , Jonathan Yu-Meng Li , Jeremie Desgagne-Bouchard , Carl Dussault
{"title":"WaveCorr:深度强化学习与组合管理的排列不变卷积策略网络","authors":"Saeed Marzban ,&nbsp;Erick Delage ,&nbsp;Jonathan Yu-Meng Li ,&nbsp;Jeremie Desgagne-Bouchard ,&nbsp;Carl Dussault","doi":"10.1016/j.orl.2023.10.011","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new portfolio policy convolutional neural network architecture, WaveCorr, for deep reinforcement learning applied to portfolio optimization. WaveCorr is the first to treat asset correlation while preserving “asset invariance property”, a new permutation invariance property that significantly increases the stability of performance in problems where input indexing is done arbitrarily. A general theory is also derived for verifying this property in other fields of application. Our experiments show that WaveCorr consistently outperforms other state-of-the-art convolutional architectures.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167637723001748/pdfft?md5=b7c5c893297ec90063fd55311e3c9b6e&pid=1-s2.0-S0167637723001748-main.pdf","citationCount":"0","resultStr":"{\"title\":\"WaveCorr: Deep reinforcement learning with permutation invariant convolutional policy networks for portfolio management\",\"authors\":\"Saeed Marzban ,&nbsp;Erick Delage ,&nbsp;Jonathan Yu-Meng Li ,&nbsp;Jeremie Desgagne-Bouchard ,&nbsp;Carl Dussault\",\"doi\":\"10.1016/j.orl.2023.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a new portfolio policy convolutional neural network architecture, WaveCorr, for deep reinforcement learning applied to portfolio optimization. WaveCorr is the first to treat asset correlation while preserving “asset invariance property”, a new permutation invariance property that significantly increases the stability of performance in problems where input indexing is done arbitrarily. A general theory is also derived for verifying this property in other fields of application. Our experiments show that WaveCorr consistently outperforms other state-of-the-art convolutional architectures.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167637723001748/pdfft?md5=b7c5c893297ec90063fd55311e3c9b6e&pid=1-s2.0-S0167637723001748-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637723001748\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637723001748","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的投资组合策略卷积神经网络架构,WaveCorr,用于深度强化学习应用于投资组合优化。WaveCorr是第一个在保持“资产不变性”的同时处理资产相关性的,这是一种新的排列不变性,在输入索引被任意完成的问题中显著提高了性能的稳定性。本文还推导出了在其他应用领域验证这一性质的一般理论。我们的实验表明,WaveCorr始终优于其他最先进的卷积架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WaveCorr: Deep reinforcement learning with permutation invariant convolutional policy networks for portfolio management

We present a new portfolio policy convolutional neural network architecture, WaveCorr, for deep reinforcement learning applied to portfolio optimization. WaveCorr is the first to treat asset correlation while preserving “asset invariance property”, a new permutation invariance property that significantly increases the stability of performance in problems where input indexing is done arbitrarily. A general theory is also derived for verifying this property in other fields of application. Our experiments show that WaveCorr consistently outperforms other state-of-the-art convolutional architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
期刊最新文献
Break maximization for round-robin tournaments without consecutive breaks Anchored rescheduling problem with non-availability periods The circle packing problem: A theoretical comparison of various convexification techniques Structured pruning of neural networks for constraints learning Worst-case analysis of restarted primal-dual hybrid gradient on totally unimodular linear programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1