{"title":"修正RQD值的井眼分析","authors":"Gábor Somodi, Balázs Vásárhelyi","doi":"10.3390/geotechnics3040055","DOIUrl":null,"url":null,"abstract":"The most common classification method of drill cores is the Rock Quality Designation (RQD) value, which indicates the percentage of rock cores longer than 10 cm in a given core section. This core logging procedure is the basic parameter in the most useful rock mass classification methods like Rock Mass Rate (RMR) and Rock Mass Quality (Q). It is also used to determine the Geological Strength Index (GSI), which has become widely used in the last 20 years. One of the basic problems of the RQD value is that it does not distinguish different rock cores longer than 10 cm (100% is obtained for one piece of 1 m length and 10 pieces of 10 cm length) and a uniform result is obtained for shorter units. In this paper, the so-called Integrated RQD (Int_RQD) factor is introduced to eliminate these problems and to provide a better description of fracture density in the core logging procedure. As it uses the original core logging procedure, historical RQD data can also be reevaluated. Considering that RQD is an input parameter for most rock engineering classifications, these systems such as GSI can be reviewed based on the new RQD definition proposed herein.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"19 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borehole Analysis with the Modification of RQD Value\",\"authors\":\"Gábor Somodi, Balázs Vásárhelyi\",\"doi\":\"10.3390/geotechnics3040055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common classification method of drill cores is the Rock Quality Designation (RQD) value, which indicates the percentage of rock cores longer than 10 cm in a given core section. This core logging procedure is the basic parameter in the most useful rock mass classification methods like Rock Mass Rate (RMR) and Rock Mass Quality (Q). It is also used to determine the Geological Strength Index (GSI), which has become widely used in the last 20 years. One of the basic problems of the RQD value is that it does not distinguish different rock cores longer than 10 cm (100% is obtained for one piece of 1 m length and 10 pieces of 10 cm length) and a uniform result is obtained for shorter units. In this paper, the so-called Integrated RQD (Int_RQD) factor is introduced to eliminate these problems and to provide a better description of fracture density in the core logging procedure. As it uses the original core logging procedure, historical RQD data can also be reevaluated. Considering that RQD is an input parameter for most rock engineering classifications, these systems such as GSI can be reviewed based on the new RQD definition proposed herein.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3040055\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geotechnics3040055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Borehole Analysis with the Modification of RQD Value
The most common classification method of drill cores is the Rock Quality Designation (RQD) value, which indicates the percentage of rock cores longer than 10 cm in a given core section. This core logging procedure is the basic parameter in the most useful rock mass classification methods like Rock Mass Rate (RMR) and Rock Mass Quality (Q). It is also used to determine the Geological Strength Index (GSI), which has become widely used in the last 20 years. One of the basic problems of the RQD value is that it does not distinguish different rock cores longer than 10 cm (100% is obtained for one piece of 1 m length and 10 pieces of 10 cm length) and a uniform result is obtained for shorter units. In this paper, the so-called Integrated RQD (Int_RQD) factor is introduced to eliminate these problems and to provide a better description of fracture density in the core logging procedure. As it uses the original core logging procedure, historical RQD data can also be reevaluated. Considering that RQD is an input parameter for most rock engineering classifications, these systems such as GSI can be reviewed based on the new RQD definition proposed herein.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.