深度神经网络的可学习扩展激活函数

Q3 Computer Science International Journal of Computing Pub Date : 2023-10-01 DOI:10.47839/ijc.22.3.3225
Yevgeniy Bodyanskiy, Serhii Kostiuk
{"title":"深度神经网络的可学习扩展激活函数","authors":"Yevgeniy Bodyanskiy, Serhii Kostiuk","doi":"10.47839/ijc.22.3.3225","DOIUrl":null,"url":null,"abstract":"This paper introduces Learnable Extended Activation Function (LEAF) - an adaptive activation function that combines the properties of squashing functions and rectifier units. Depending on the target architecture and data processing task, LEAF adapts its form during training to achieve lower loss values and improve the training results. While not suffering from the \"vanishing gradient\" effect, LEAF can directly replace SiLU, ReLU, Sigmoid, Tanh, Swish, and AHAF in feed-forward, recurrent, and many other neural network architectures. The training process for LEAF features a two-stage approach when the activation function parameters update before the synaptic weights. The experimental evaluation in the image classification task shows the superior performance of LEAF compared to the non-adaptive alternatives. Particularly, LEAF-asTanh provides 7% better classification accuracy than hyperbolic tangents on the CIFAR-10 dataset. As empirically examined, LEAF-as-SiLU and LEAF-as-Sigmoid in convolutional networks tend to \"evolve\" into SiLU-like forms. The proposed activation function and the corresponding training algorithm are relatively simple from the computational standpoint and easily apply to existing deep neural networks.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learnable Extended Activation Function for Deep Neural Networks\",\"authors\":\"Yevgeniy Bodyanskiy, Serhii Kostiuk\",\"doi\":\"10.47839/ijc.22.3.3225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Learnable Extended Activation Function (LEAF) - an adaptive activation function that combines the properties of squashing functions and rectifier units. Depending on the target architecture and data processing task, LEAF adapts its form during training to achieve lower loss values and improve the training results. While not suffering from the \\\"vanishing gradient\\\" effect, LEAF can directly replace SiLU, ReLU, Sigmoid, Tanh, Swish, and AHAF in feed-forward, recurrent, and many other neural network architectures. The training process for LEAF features a two-stage approach when the activation function parameters update before the synaptic weights. The experimental evaluation in the image classification task shows the superior performance of LEAF compared to the non-adaptive alternatives. Particularly, LEAF-asTanh provides 7% better classification accuracy than hyperbolic tangents on the CIFAR-10 dataset. As empirically examined, LEAF-as-SiLU and LEAF-as-Sigmoid in convolutional networks tend to \\\"evolve\\\" into SiLU-like forms. The proposed activation function and the corresponding training algorithm are relatively simple from the computational standpoint and easily apply to existing deep neural networks.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.22.3.3225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.3.3225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

介绍了可学习扩展激活函数(LEAF)——一种结合了压缩函数和整流单元特性的自适应激活函数。根据目标体系结构和数据处理任务的不同,LEAF在训练过程中调整其形式,以达到更低的损失值,提高训练效果。在不受“梯度消失”影响的同时,LEAF可以直接取代前馈、循环和许多其他神经网络架构中的SiLU、ReLU、Sigmoid、Tanh、Swish和AHAF。当激活函数参数在突触权值之前更新时,LEAF的训练过程分为两阶段。在图像分类任务中的实验评价表明,LEAF算法优于非自适应算法。特别是,LEAF-asTanh在CIFAR-10数据集上提供了比双曲切线高7%的分类精度。根据经验检验,卷积网络中的LEAF-as-SiLU和LEAF-as-Sigmoid倾向于“进化”成类似silu的形式。所提出的激活函数和相应的训练算法从计算角度来看相对简单,易于应用于现有的深度神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learnable Extended Activation Function for Deep Neural Networks
This paper introduces Learnable Extended Activation Function (LEAF) - an adaptive activation function that combines the properties of squashing functions and rectifier units. Depending on the target architecture and data processing task, LEAF adapts its form during training to achieve lower loss values and improve the training results. While not suffering from the "vanishing gradient" effect, LEAF can directly replace SiLU, ReLU, Sigmoid, Tanh, Swish, and AHAF in feed-forward, recurrent, and many other neural network architectures. The training process for LEAF features a two-stage approach when the activation function parameters update before the synaptic weights. The experimental evaluation in the image classification task shows the superior performance of LEAF compared to the non-adaptive alternatives. Particularly, LEAF-asTanh provides 7% better classification accuracy than hyperbolic tangents on the CIFAR-10 dataset. As empirically examined, LEAF-as-SiLU and LEAF-as-Sigmoid in convolutional networks tend to "evolve" into SiLU-like forms. The proposed activation function and the corresponding training algorithm are relatively simple from the computational standpoint and easily apply to existing deep neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computing
International Journal of Computing Computer Science-Computer Science (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.
期刊最新文献
Website Quality Measurement of Educational Government Agency in Indonesia using Modified WebQual 4.0 A Comparative Study of Data Annotations and Fluent Validation in .NET Attr4Vis: Revisiting Importance of Attribute Classification in Vision-Language Models for Video Recognition The Improved Method for Identifying Parameters of Interval Nonlinear Models of Static Systems Image Transmission in WMSN Based on Residue Number System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1