{"title":"参数空间边界上参数的惩罚拟似然估计和模型选择","authors":"Heino Bohn Nielsen, Anders Rahbek","doi":"10.1093/ectj/utad022","DOIUrl":null,"url":null,"abstract":"Abstract We consider here penalized likelihood-based estimation and model selection applied to econometric time series models, which allow for non-negativity (boundary) constraints on some or all of the parameters. We establish that joint model selection and estimation result in standard asymptotic Gaussian distributed estimators. The results contrasts with non-penalized estimation, which as well-known leads to non-standard asymptotic distributions that depend on the unknown number of parameters on the boundary of the parameter space. We apply our results to the rich class of autoregressive conditional heteroskedastic (ARCH) models for time-varying volatility. For the ARCH models, simulations show that penalized estimation and model-selection works surprisingly well, even for models with a large number of parameters. An empirical illustration for stock-market return data shows the ability of penalized estimation to select ARCH models that fit nicely the empirical autocorrelation function, and confirms the stylized fact of long-memory in such financial time-series data.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"45 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space\",\"authors\":\"Heino Bohn Nielsen, Anders Rahbek\",\"doi\":\"10.1093/ectj/utad022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider here penalized likelihood-based estimation and model selection applied to econometric time series models, which allow for non-negativity (boundary) constraints on some or all of the parameters. We establish that joint model selection and estimation result in standard asymptotic Gaussian distributed estimators. The results contrasts with non-penalized estimation, which as well-known leads to non-standard asymptotic distributions that depend on the unknown number of parameters on the boundary of the parameter space. We apply our results to the rich class of autoregressive conditional heteroskedastic (ARCH) models for time-varying volatility. For the ARCH models, simulations show that penalized estimation and model-selection works surprisingly well, even for models with a large number of parameters. An empirical illustration for stock-market return data shows the ability of penalized estimation to select ARCH models that fit nicely the empirical autocorrelation function, and confirms the stylized fact of long-memory in such financial time-series data.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ectj/utad022\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ectj/utad022","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space
Abstract We consider here penalized likelihood-based estimation and model selection applied to econometric time series models, which allow for non-negativity (boundary) constraints on some or all of the parameters. We establish that joint model selection and estimation result in standard asymptotic Gaussian distributed estimators. The results contrasts with non-penalized estimation, which as well-known leads to non-standard asymptotic distributions that depend on the unknown number of parameters on the boundary of the parameter space. We apply our results to the rich class of autoregressive conditional heteroskedastic (ARCH) models for time-varying volatility. For the ARCH models, simulations show that penalized estimation and model-selection works surprisingly well, even for models with a large number of parameters. An empirical illustration for stock-market return data shows the ability of penalized estimation to select ARCH models that fit nicely the empirical autocorrelation function, and confirms the stylized fact of long-memory in such financial time-series data.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.