{"title":"带外生输入的非线性自回归神经网络用于无线传感器网络的高能效非合作目标跟踪","authors":"Jayesh Munjani, Maulin Joshi","doi":"10.1504/ijict.2023.128709","DOIUrl":null,"url":null,"abstract":"The prediction algorithms have been studied as a part of target tracking applications for many years. The prediction algorithm helps to select appropriate nodes to achieve precise target locations while tracking. The only group of sensor nodes nearer the predicted location is activated to save network energy. The inaccurate prediction algorithm may hamper energy consumption by activating inappropriate nodes resulting in a target loss. We propose a nonlinear autoregressive neural network with exogenous input (NARX)-based target-tracking algorithm that improves tracking accuracy and energy efficiency. The proposed algorithm uses vehicle location time series and exogenous vehicle velocity time series as inputs and exerts accurate prediction location for given non-cooperative manoeuvring targets. The proposed algorithm is evaluated in terms of average prediction error, total network energy used, and the count of a target loss with state of art. The experiment outcome proves that the proposed novel NARX-based tracking algorithm outperforms and saves up to 26% of network energy with up to 83% reduction in tracking error compared to existing target tracking algorithms.","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear autoregressive neural network with exogenous input for an energy efficient non-cooperative target tracking in wireless sensor network\",\"authors\":\"Jayesh Munjani, Maulin Joshi\",\"doi\":\"10.1504/ijict.2023.128709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction algorithms have been studied as a part of target tracking applications for many years. The prediction algorithm helps to select appropriate nodes to achieve precise target locations while tracking. The only group of sensor nodes nearer the predicted location is activated to save network energy. The inaccurate prediction algorithm may hamper energy consumption by activating inappropriate nodes resulting in a target loss. We propose a nonlinear autoregressive neural network with exogenous input (NARX)-based target-tracking algorithm that improves tracking accuracy and energy efficiency. The proposed algorithm uses vehicle location time series and exogenous vehicle velocity time series as inputs and exerts accurate prediction location for given non-cooperative manoeuvring targets. The proposed algorithm is evaluated in terms of average prediction error, total network energy used, and the count of a target loss with state of art. The experiment outcome proves that the proposed novel NARX-based tracking algorithm outperforms and saves up to 26% of network energy with up to 83% reduction in tracking error compared to existing target tracking algorithms.\",\"PeriodicalId\":39396,\"journal\":{\"name\":\"International Journal of Information and Communication Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijict.2023.128709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijict.2023.128709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Nonlinear autoregressive neural network with exogenous input for an energy efficient non-cooperative target tracking in wireless sensor network
The prediction algorithms have been studied as a part of target tracking applications for many years. The prediction algorithm helps to select appropriate nodes to achieve precise target locations while tracking. The only group of sensor nodes nearer the predicted location is activated to save network energy. The inaccurate prediction algorithm may hamper energy consumption by activating inappropriate nodes resulting in a target loss. We propose a nonlinear autoregressive neural network with exogenous input (NARX)-based target-tracking algorithm that improves tracking accuracy and energy efficiency. The proposed algorithm uses vehicle location time series and exogenous vehicle velocity time series as inputs and exerts accurate prediction location for given non-cooperative manoeuvring targets. The proposed algorithm is evaluated in terms of average prediction error, total network energy used, and the count of a target loss with state of art. The experiment outcome proves that the proposed novel NARX-based tracking algorithm outperforms and saves up to 26% of network energy with up to 83% reduction in tracking error compared to existing target tracking algorithms.
期刊介绍:
IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM