Mohamad Iqmal Jamaludin, Teddy Surya Gunawan, Rajendra Kumar Karupiah, Suriza Ahmad Zabidi, Mira Kartiwi, Zamzuri Zakaria
{"title":"基于前馈神经网络的U-Net结构优化在脊柱侧凸诊断中的精确Cobb角预测","authors":"Mohamad Iqmal Jamaludin, Teddy Surya Gunawan, Rajendra Kumar Karupiah, Suriza Ahmad Zabidi, Mira Kartiwi, Zamzuri Zakaria","doi":"10.52549/ijeei.v11i3.5009","DOIUrl":null,"url":null,"abstract":"In the burgeoning field of Artificial Intelligence (AI) and its notable subsets, such as Deep Learning (DL), there is evidence of its transformative impact in assisting clinicians, particularly in diagnosing scoliosis. AI is unrivaled for its speed and precision in analyzing medical images, including X-rays and computed tomography (CT) scans. However, the path does not lack obstacles. Biases, unanticipated outcomes, and false positive and negative predictions present significant challenges. Our research employed three complex experimental sets, each focusing on adapting the U-Net architecture. Through a nuanced combination of feed-forward neural network (FFNN) configurations and hyperparameters, we endeavored to determine the most effective nonlinear regression model configuration for predicting the Cobb angle. This was done with the dual purpose of reducing AI training time without sacrificing predictive accuracy. Utilizing the capabilities of the PyTorch framework, we meticulously crafted and refined the deep learning models for each of the three experiments, focusing on an FFFN dropout rate of p=0.45. The Root Mean Square Error (RMSE), the number of epochs, and the number of nodes spanning three hidden layers in each FFFN were utilized as crucial performance metrics while a base learning rate of 0.001 was maintained. Notably, during the optimization phase, one of the experiments incorporated a learning rate scheduler to protect against potential pitfalls such as local minima and saddle points. A judiciously incorporated Early Stopping technique, triggered between the patience range of 5-10 epochs, ensured model stability as the Mean Squared Error (MSE) plateau loss approached approximately 1. Consequently, the model converged between 50 and 82 epochs. We hypothesize that our proposed architecture holds promise for future refinements, conditioned on assiduous experimentation with an array of medical deep learning paradigms.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing U-Net Architecture with Feed-Forward Neural Networks for Precise Cobb Angle Prediction in Scoliosis Diagnosis\",\"authors\":\"Mohamad Iqmal Jamaludin, Teddy Surya Gunawan, Rajendra Kumar Karupiah, Suriza Ahmad Zabidi, Mira Kartiwi, Zamzuri Zakaria\",\"doi\":\"10.52549/ijeei.v11i3.5009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the burgeoning field of Artificial Intelligence (AI) and its notable subsets, such as Deep Learning (DL), there is evidence of its transformative impact in assisting clinicians, particularly in diagnosing scoliosis. AI is unrivaled for its speed and precision in analyzing medical images, including X-rays and computed tomography (CT) scans. However, the path does not lack obstacles. Biases, unanticipated outcomes, and false positive and negative predictions present significant challenges. Our research employed three complex experimental sets, each focusing on adapting the U-Net architecture. Through a nuanced combination of feed-forward neural network (FFNN) configurations and hyperparameters, we endeavored to determine the most effective nonlinear regression model configuration for predicting the Cobb angle. This was done with the dual purpose of reducing AI training time without sacrificing predictive accuracy. Utilizing the capabilities of the PyTorch framework, we meticulously crafted and refined the deep learning models for each of the three experiments, focusing on an FFFN dropout rate of p=0.45. The Root Mean Square Error (RMSE), the number of epochs, and the number of nodes spanning three hidden layers in each FFFN were utilized as crucial performance metrics while a base learning rate of 0.001 was maintained. Notably, during the optimization phase, one of the experiments incorporated a learning rate scheduler to protect against potential pitfalls such as local minima and saddle points. A judiciously incorporated Early Stopping technique, triggered between the patience range of 5-10 epochs, ensured model stability as the Mean Squared Error (MSE) plateau loss approached approximately 1. Consequently, the model converged between 50 and 82 epochs. We hypothesize that our proposed architecture holds promise for future refinements, conditioned on assiduous experimentation with an array of medical deep learning paradigms.\",\"PeriodicalId\":37618,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52549/ijeei.v11i3.5009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.5009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Optimizing U-Net Architecture with Feed-Forward Neural Networks for Precise Cobb Angle Prediction in Scoliosis Diagnosis
In the burgeoning field of Artificial Intelligence (AI) and its notable subsets, such as Deep Learning (DL), there is evidence of its transformative impact in assisting clinicians, particularly in diagnosing scoliosis. AI is unrivaled for its speed and precision in analyzing medical images, including X-rays and computed tomography (CT) scans. However, the path does not lack obstacles. Biases, unanticipated outcomes, and false positive and negative predictions present significant challenges. Our research employed three complex experimental sets, each focusing on adapting the U-Net architecture. Through a nuanced combination of feed-forward neural network (FFNN) configurations and hyperparameters, we endeavored to determine the most effective nonlinear regression model configuration for predicting the Cobb angle. This was done with the dual purpose of reducing AI training time without sacrificing predictive accuracy. Utilizing the capabilities of the PyTorch framework, we meticulously crafted and refined the deep learning models for each of the three experiments, focusing on an FFFN dropout rate of p=0.45. The Root Mean Square Error (RMSE), the number of epochs, and the number of nodes spanning three hidden layers in each FFFN were utilized as crucial performance metrics while a base learning rate of 0.001 was maintained. Notably, during the optimization phase, one of the experiments incorporated a learning rate scheduler to protect against potential pitfalls such as local minima and saddle points. A judiciously incorporated Early Stopping technique, triggered between the patience range of 5-10 epochs, ensured model stability as the Mean Squared Error (MSE) plateau loss approached approximately 1. Consequently, the model converged between 50 and 82 epochs. We hypothesize that our proposed architecture holds promise for future refinements, conditioned on assiduous experimentation with an array of medical deep learning paradigms.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).