{"title":"静电纺丝和3D打印制备的组织工程用聚己内酯、聚乳酸和纳米羟基磷灰石支架","authors":"Omar Alejandro González Rodríguez, Nancy Cecilia Ramírez Guerrero, Rocio Guadalupe Casañas Pimentel, Mónica Rosalia Jaime Fonseca, Eduardo San Martín Martínez","doi":"10.1080/00914037.2023.2277222","DOIUrl":null,"url":null,"abstract":"AbstractThere is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering.Keywords: Nanofiberspolymeric scaffoldselectrospunpolylactic acidpolycaprolactonenanohydroxyapatitetissue engineeringbone AcknowledgmentsGonzalez Rodríguez Omar A. and Ramírez Guerrero Nancy acknowledge doctoral fellowship from CONACyT, N° 001406.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.CRediT authorship contribution statementGonzález Rodríguez Omar Alejandro: Conceptualization, Methodology, Ramírez Guerrero Nancy Cecilia: Methodology, Software, Casañas Pimentel Rocio Guadalupe: Visualization, Investigation, Jaime Fonseca Mónica Rosalia: Writing – Reviewing and Editing, San Martín Martínez Eduardo: Conceptualization, Data curation, Writing – Original draft preparation.Data availability statementData will be made available on request.Additional informationFundingThis work was supported by Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico, Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional.","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering\",\"authors\":\"Omar Alejandro González Rodríguez, Nancy Cecilia Ramírez Guerrero, Rocio Guadalupe Casañas Pimentel, Mónica Rosalia Jaime Fonseca, Eduardo San Martín Martínez\",\"doi\":\"10.1080/00914037.2023.2277222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThere is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering.Keywords: Nanofiberspolymeric scaffoldselectrospunpolylactic acidpolycaprolactonenanohydroxyapatitetissue engineeringbone AcknowledgmentsGonzalez Rodríguez Omar A. and Ramírez Guerrero Nancy acknowledge doctoral fellowship from CONACyT, N° 001406.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.CRediT authorship contribution statementGonzález Rodríguez Omar Alejandro: Conceptualization, Methodology, Ramírez Guerrero Nancy Cecilia: Methodology, Software, Casañas Pimentel Rocio Guadalupe: Visualization, Investigation, Jaime Fonseca Mónica Rosalia: Writing – Reviewing and Editing, San Martín Martínez Eduardo: Conceptualization, Data curation, Writing – Original draft preparation.Data availability statementData will be made available on request.Additional informationFundingThis work was supported by Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico, Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional.\",\"PeriodicalId\":14203,\"journal\":{\"name\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00914037.2023.2277222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymeric Materials and Polymeric Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00914037.2023.2277222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering
AbstractThere is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering.Keywords: Nanofiberspolymeric scaffoldselectrospunpolylactic acidpolycaprolactonenanohydroxyapatitetissue engineeringbone AcknowledgmentsGonzalez Rodríguez Omar A. and Ramírez Guerrero Nancy acknowledge doctoral fellowship from CONACyT, N° 001406.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.CRediT authorship contribution statementGonzález Rodríguez Omar Alejandro: Conceptualization, Methodology, Ramírez Guerrero Nancy Cecilia: Methodology, Software, Casañas Pimentel Rocio Guadalupe: Visualization, Investigation, Jaime Fonseca Mónica Rosalia: Writing – Reviewing and Editing, San Martín Martínez Eduardo: Conceptualization, Data curation, Writing – Original draft preparation.Data availability statementData will be made available on request.Additional informationFundingThis work was supported by Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico, Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional.
期刊介绍:
International Journal of Polymeric Materials and Polymeric Biomaterials is the official publication of the International Society for Biomedical Polymers and Polymeric Biomaterials (ISBPPB). This journal provides a forum for the publication of peer-reviewed, English language articles and select reviews on all aspects of polymeric materials and biomedical polymers. Being interdisciplinary in nature, this journal publishes extensive contributions in the areas of encapsulation and controlled release technologies to address innovation needs as well.