{"title":"基于ML.NET的航空移动测绘图像树种分类","authors":"Maja Michałowska, Jacek Rapiński, Joanna Janicka","doi":"10.1080/22797254.2023.2271651","DOIUrl":null,"url":null,"abstract":"Deep learning is a powerful tool for automating the process of recognizing and classifying objects in images. In this study, we used ML.NET, a popular open-source machine learning framework, to develop a model for identifying tree species in images obtained from airborne mobile mapping. These high-resolution images can be used to create detailed maps of the landscape. They can also be analyzed and processed to extract information about visual features, including tree species recognition. The deep learning model was trained using ML.NET to classify two tree species based on the combination of airborne mobile mapping images. Our approach yielded impressive results, with a maximum classification accuracy of 93.9%. This demonstrates the effectiveness of combining imagery sources with deep learning tools in ML.NET for efficient and accurate tree species classification. This study highlights the potential of the ML.NET framework for automating object classification and can provide valuable insights and information for forestry management and conservation efforts. The primary objective of this research was to evaluate the effectiveness of an approach for identifying tree species through a model generated using a combination of ortho and oblique images captured by a mobile mapping system.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"273 29‐32","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree species classification on images from airborne mobile mapping using ML.NET\",\"authors\":\"Maja Michałowska, Jacek Rapiński, Joanna Janicka\",\"doi\":\"10.1080/22797254.2023.2271651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a powerful tool for automating the process of recognizing and classifying objects in images. In this study, we used ML.NET, a popular open-source machine learning framework, to develop a model for identifying tree species in images obtained from airborne mobile mapping. These high-resolution images can be used to create detailed maps of the landscape. They can also be analyzed and processed to extract information about visual features, including tree species recognition. The deep learning model was trained using ML.NET to classify two tree species based on the combination of airborne mobile mapping images. Our approach yielded impressive results, with a maximum classification accuracy of 93.9%. This demonstrates the effectiveness of combining imagery sources with deep learning tools in ML.NET for efficient and accurate tree species classification. This study highlights the potential of the ML.NET framework for automating object classification and can provide valuable insights and information for forestry management and conservation efforts. The primary objective of this research was to evaluate the effectiveness of an approach for identifying tree species through a model generated using a combination of ortho and oblique images captured by a mobile mapping system.\",\"PeriodicalId\":49077,\"journal\":{\"name\":\"European Journal of Remote Sensing\",\"volume\":\"273 29‐32\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22797254.2023.2271651\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22797254.2023.2271651","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Tree species classification on images from airborne mobile mapping using ML.NET
Deep learning is a powerful tool for automating the process of recognizing and classifying objects in images. In this study, we used ML.NET, a popular open-source machine learning framework, to develop a model for identifying tree species in images obtained from airborne mobile mapping. These high-resolution images can be used to create detailed maps of the landscape. They can also be analyzed and processed to extract information about visual features, including tree species recognition. The deep learning model was trained using ML.NET to classify two tree species based on the combination of airborne mobile mapping images. Our approach yielded impressive results, with a maximum classification accuracy of 93.9%. This demonstrates the effectiveness of combining imagery sources with deep learning tools in ML.NET for efficient and accurate tree species classification. This study highlights the potential of the ML.NET framework for automating object classification and can provide valuable insights and information for forestry management and conservation efforts. The primary objective of this research was to evaluate the effectiveness of an approach for identifying tree species through a model generated using a combination of ortho and oblique images captured by a mobile mapping system.
期刊介绍:
European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include:
-land use/land cover
-geology, earth and geoscience
-agriculture and forestry
-geography and landscape
-ecology and environmental science
-support to land management
-hydrology and water resources
-atmosphere and meteorology
-oceanography
-new sensor systems, missions and software/algorithms
-pre processing/calibration
-classifications
-time series/change analysis
-data integration/merging/fusion
-image processing and analysis
-modelling
European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.