S. K. Shahcheragh, M. M. Bagheri Mohagheghi, A. Shirpay
{"title":"物理和化学活化方法对多孔活性炭结构、光学吸光度、带隙和厄巴赫能的影响","authors":"S. K. Shahcheragh, M. M. Bagheri Mohagheghi, A. Shirpay","doi":"10.1007/s42452-023-05559-6","DOIUrl":null,"url":null,"abstract":"Abstract In this study, activated carbon was synthesized using the almond shell and palm kernel by physical activation with water vapor and chemical activation with phosphoric acid (H 3 PO 4 ) methods. Then, the structural and optical properties of the activated carbons were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. The SEM images showed that in the raw sample of hard almond shell and palm kernel, there is no porosity and pores, but in the activated carbon samples, porosity and structural defects were clearly observed. The XRD patterns showed that porous and amorphous structure was formed in all samples synthesized with physical and chemical activation. The results of FTIR spectra of activated carbons showed that there are carbon functional groups in all samples. The optical absorption coefficient (α) of the activated carbon with physical and chemical activation methods was obtained in order of 10 5 –10 6 . The band gap measurement of porous nanostructures showed that the activated carbon synthesized with chemical and physical activation methods have energy gap (E g ) in region = 2.80 to 3.15 eV and urbach energy (E U ) in region = 120 to 210 meV.","PeriodicalId":21821,"journal":{"name":"SN Applied Sciences","volume":"94 3","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of physical and chemical activation methods on the structure, optical absorbance, band gap and urbach energy of porous activated carbon\",\"authors\":\"S. K. Shahcheragh, M. M. Bagheri Mohagheghi, A. Shirpay\",\"doi\":\"10.1007/s42452-023-05559-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, activated carbon was synthesized using the almond shell and palm kernel by physical activation with water vapor and chemical activation with phosphoric acid (H 3 PO 4 ) methods. Then, the structural and optical properties of the activated carbons were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. The SEM images showed that in the raw sample of hard almond shell and palm kernel, there is no porosity and pores, but in the activated carbon samples, porosity and structural defects were clearly observed. The XRD patterns showed that porous and amorphous structure was formed in all samples synthesized with physical and chemical activation. The results of FTIR spectra of activated carbons showed that there are carbon functional groups in all samples. The optical absorption coefficient (α) of the activated carbon with physical and chemical activation methods was obtained in order of 10 5 –10 6 . The band gap measurement of porous nanostructures showed that the activated carbon synthesized with chemical and physical activation methods have energy gap (E g ) in region = 2.80 to 3.15 eV and urbach energy (E U ) in region = 120 to 210 meV.\",\"PeriodicalId\":21821,\"journal\":{\"name\":\"SN Applied Sciences\",\"volume\":\"94 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42452-023-05559-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42452-023-05559-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effect of physical and chemical activation methods on the structure, optical absorbance, band gap and urbach energy of porous activated carbon
Abstract In this study, activated carbon was synthesized using the almond shell and palm kernel by physical activation with water vapor and chemical activation with phosphoric acid (H 3 PO 4 ) methods. Then, the structural and optical properties of the activated carbons were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. The SEM images showed that in the raw sample of hard almond shell and palm kernel, there is no porosity and pores, but in the activated carbon samples, porosity and structural defects were clearly observed. The XRD patterns showed that porous and amorphous structure was formed in all samples synthesized with physical and chemical activation. The results of FTIR spectra of activated carbons showed that there are carbon functional groups in all samples. The optical absorption coefficient (α) of the activated carbon with physical and chemical activation methods was obtained in order of 10 5 –10 6 . The band gap measurement of porous nanostructures showed that the activated carbon synthesized with chemical and physical activation methods have energy gap (E g ) in region = 2.80 to 3.15 eV and urbach energy (E U ) in region = 120 to 210 meV.