Najihah Rameli, Amanatuzzakiah Abdul Halim, Saeda Jannah Kushairi, Nuur Fahanis Che Lah
{"title":"两功能单体分子印迹聚合物对阿特拉津的吸附等温线及动力学分析","authors":"Najihah Rameli, Amanatuzzakiah Abdul Halim, Saeda Jannah Kushairi, Nuur Fahanis Che Lah","doi":"10.1080/03067319.2023.2277888","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe extensive use of atrazine as a pesticide in agricultural practices poses a significant risk to the environment and human health. Atrazine, when applied to plants, has the potential to migrate through the soil and contaminate groundwater sources. Consequently, there is an urgent need to explore alternative methods for detecting atrazine. This study aimed to investigate the quantification of atrazine using molecularly imprinted polymer (MIP) and to assess the adsorption performance and kinetics of the MIPs using various isotherm and kinetic adsorption models. MIP was synthesised with two distinct functional monomers: methacrylic acid (MAA) and acrylamide (AA). Computational analysis was employed to estimate the binding affinity of these monomers towards atrazine. Subsequently, results from adsorption capacity study indicated a higher binding affinity for MAA compared to AA with values of 0.92 mg/g and 0.48 mg/g, respectively. These findings aligned with the simulated data from the docking analysis. Moreover, the adsorption mechanism of atrazine towards MIP-MAA and MIP-AA was best represented by Jovanovic model, followed by the Langmuir, Freundlich and Linear models. While for kinetics analysis, the Elovich model was chosen as the best fit. In conclusion, the selection of the functional monomer is of utmost importance in designing MIPs as it facilitates specific interactions with analyte molecules and enhances the performance of the MIPs.KEYWORDS: Molecularly imprinted polymeratrazineadsorption isothermfunctional monomerbinding affinity Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by IIUM Research Initiative Grant Scheme (Flagship) 2019 [IRF19-006-0006] from the Ministry of Higher Education, Malaysia.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"48 10","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption isotherm and kinetic analysis of molecularly imprinted polymer with two functional monomers for quantification of atrazine\",\"authors\":\"Najihah Rameli, Amanatuzzakiah Abdul Halim, Saeda Jannah Kushairi, Nuur Fahanis Che Lah\",\"doi\":\"10.1080/03067319.2023.2277888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe extensive use of atrazine as a pesticide in agricultural practices poses a significant risk to the environment and human health. Atrazine, when applied to plants, has the potential to migrate through the soil and contaminate groundwater sources. Consequently, there is an urgent need to explore alternative methods for detecting atrazine. This study aimed to investigate the quantification of atrazine using molecularly imprinted polymer (MIP) and to assess the adsorption performance and kinetics of the MIPs using various isotherm and kinetic adsorption models. MIP was synthesised with two distinct functional monomers: methacrylic acid (MAA) and acrylamide (AA). Computational analysis was employed to estimate the binding affinity of these monomers towards atrazine. Subsequently, results from adsorption capacity study indicated a higher binding affinity for MAA compared to AA with values of 0.92 mg/g and 0.48 mg/g, respectively. These findings aligned with the simulated data from the docking analysis. Moreover, the adsorption mechanism of atrazine towards MIP-MAA and MIP-AA was best represented by Jovanovic model, followed by the Langmuir, Freundlich and Linear models. While for kinetics analysis, the Elovich model was chosen as the best fit. In conclusion, the selection of the functional monomer is of utmost importance in designing MIPs as it facilitates specific interactions with analyte molecules and enhances the performance of the MIPs.KEYWORDS: Molecularly imprinted polymeratrazineadsorption isothermfunctional monomerbinding affinity Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by IIUM Research Initiative Grant Scheme (Flagship) 2019 [IRF19-006-0006] from the Ministry of Higher Education, Malaysia.\",\"PeriodicalId\":13973,\"journal\":{\"name\":\"International Journal of Environmental Analytical Chemistry\",\"volume\":\"48 10\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Analytical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03067319.2023.2277888\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03067319.2023.2277888","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Adsorption isotherm and kinetic analysis of molecularly imprinted polymer with two functional monomers for quantification of atrazine
ABSTRACTThe extensive use of atrazine as a pesticide in agricultural practices poses a significant risk to the environment and human health. Atrazine, when applied to plants, has the potential to migrate through the soil and contaminate groundwater sources. Consequently, there is an urgent need to explore alternative methods for detecting atrazine. This study aimed to investigate the quantification of atrazine using molecularly imprinted polymer (MIP) and to assess the adsorption performance and kinetics of the MIPs using various isotherm and kinetic adsorption models. MIP was synthesised with two distinct functional monomers: methacrylic acid (MAA) and acrylamide (AA). Computational analysis was employed to estimate the binding affinity of these monomers towards atrazine. Subsequently, results from adsorption capacity study indicated a higher binding affinity for MAA compared to AA with values of 0.92 mg/g and 0.48 mg/g, respectively. These findings aligned with the simulated data from the docking analysis. Moreover, the adsorption mechanism of atrazine towards MIP-MAA and MIP-AA was best represented by Jovanovic model, followed by the Langmuir, Freundlich and Linear models. While for kinetics analysis, the Elovich model was chosen as the best fit. In conclusion, the selection of the functional monomer is of utmost importance in designing MIPs as it facilitates specific interactions with analyte molecules and enhances the performance of the MIPs.KEYWORDS: Molecularly imprinted polymeratrazineadsorption isothermfunctional monomerbinding affinity Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by IIUM Research Initiative Grant Scheme (Flagship) 2019 [IRF19-006-0006] from the Ministry of Higher Education, Malaysia.
期刊介绍:
International Journal of Environmental Analytical Chemistry comprises original research on all aspects of analytical work related to environmental problems. This includes analysis of organic, inorganic and radioactive pollutants in air, water, sediments and biota; and determination of harmful substances, including analytical methods for the investigation of chemical or metabolic breakdown patterns in the environment and in biological samples.
The journal also covers the development of new analytical methods or improvement of existing ones useful for the control and investigation of pollutants or trace amounts of naturally occurring active chemicals in all environmental compartments. Development, modification and automation of instruments and techniques with potential in environment sciences are also part of the journal.
Case studies are also considered, particularly for areas where information is scarce or lacking, providing that reported data is significant and representative, either spatially or temporally, and quality assured. Owing to the interdisciplinary nature of this journal, it will also include topics of interest to researchers in the fields of medical science (health sciences), toxicology, forensic sciences, oceanography, food sciences, biological sciences and other fields that, in one way or another, contribute to the knowledge of our environment and have to make use of analytical chemistry for this purpose.