{"title":"特殊图类的稳定性、顶点稳定性和非冻结性","authors":"Frank Gurski, Jörg Rothe, Robin Weishaupt","doi":"10.1007/s00224-023-10149-5","DOIUrl":null,"url":null,"abstract":"Abstract Frei et al. (J. Comput. Syst. Sci. 123 , 103–121, 2022) show that the stability, vertex stability, and unfrozenness problems with respect to certain graph parameters are complete for $$\\varvec{\\Theta _{2}^{\\textrm{P}}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mi>Θ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mtext>P</mml:mtext> </mml:msubsup> </mml:mrow> </mml:math> , the class of problems solvable in polynomial time by parallel access to an NP oracle. They studied the common graph parameters $$\\varvec{\\alpha }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:math> (the independence number), $$\\varvec{\\beta }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>β</mml:mi> </mml:mrow> </mml:math> (the vertex cover number), $$\\varvec{\\omega }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ω</mml:mi> </mml:mrow> </mml:math> (the clique number), and $$\\varvec{\\chi }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>χ</mml:mi> </mml:mrow> </mml:math> (the chromatic number). We complement their approach by providing polynomial-time algorithms solving these problems for special graph classes, namely for graphs with bounded tree-width or bounded clique-width. In order to improve these general time bounds even further, we then focus on trees, forests, bipartite graphs, and co-graphs.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"58 10","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability, Vertex Stability, and Unfrozenness for Special Graph Classes\",\"authors\":\"Frank Gurski, Jörg Rothe, Robin Weishaupt\",\"doi\":\"10.1007/s00224-023-10149-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Frei et al. (J. Comput. Syst. Sci. 123 , 103–121, 2022) show that the stability, vertex stability, and unfrozenness problems with respect to certain graph parameters are complete for $$\\\\varvec{\\\\Theta _{2}^{\\\\textrm{P}}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msubsup> <mml:mi>Θ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mtext>P</mml:mtext> </mml:msubsup> </mml:mrow> </mml:math> , the class of problems solvable in polynomial time by parallel access to an NP oracle. They studied the common graph parameters $$\\\\varvec{\\\\alpha }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:math> (the independence number), $$\\\\varvec{\\\\beta }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>β</mml:mi> </mml:mrow> </mml:math> (the vertex cover number), $$\\\\varvec{\\\\omega }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ω</mml:mi> </mml:mrow> </mml:math> (the clique number), and $$\\\\varvec{\\\\chi }$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>χ</mml:mi> </mml:mrow> </mml:math> (the chromatic number). We complement their approach by providing polynomial-time algorithms solving these problems for special graph classes, namely for graphs with bounded tree-width or bounded clique-width. In order to improve these general time bounds even further, we then focus on trees, forests, bipartite graphs, and co-graphs.\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":\"58 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-023-10149-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10149-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Stability, Vertex Stability, and Unfrozenness for Special Graph Classes
Abstract Frei et al. (J. Comput. Syst. Sci. 123 , 103–121, 2022) show that the stability, vertex stability, and unfrozenness problems with respect to certain graph parameters are complete for $$\varvec{\Theta _{2}^{\textrm{P}}}$$ Θ2P , the class of problems solvable in polynomial time by parallel access to an NP oracle. They studied the common graph parameters $$\varvec{\alpha }$$ α (the independence number), $$\varvec{\beta }$$ β (the vertex cover number), $$\varvec{\omega }$$ ω (the clique number), and $$\varvec{\chi }$$ χ (the chromatic number). We complement their approach by providing polynomial-time algorithms solving these problems for special graph classes, namely for graphs with bounded tree-width or bounded clique-width. In order to improve these general time bounds even further, we then focus on trees, forests, bipartite graphs, and co-graphs.
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.