任务特异性震颤的病理生理学综述:来自电生理和神经影像学发现的见解

Dystonia Pub Date : 2023-11-07 DOI:10.3389/dyst.2023.11347
Yih-Chih Jacinta Kuo, Kai-Hsiang Stanley Chen
{"title":"任务特异性震颤的病理生理学综述:来自电生理和神经影像学发现的见解","authors":"Yih-Chih Jacinta Kuo, Kai-Hsiang Stanley Chen","doi":"10.3389/dyst.2023.11347","DOIUrl":null,"url":null,"abstract":"Task-specific tremor (TST) is a specific type of tremor that occurs when performing or attempting to perform a specific task, such as writing or playing a musical instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only be induced by conducting a specific task, while others can be elicited when adopting a particular position simulating a task. The pathophysiology of TST is controversial. Whether TST is an isolated tremor syndrome, a spectrum of dystonic tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from electrophysiological studies suggests that TST patients have normal reciprocal inhibition responses but abnormal motor cortical excitability, especially relating to the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery study and eyeblink classical conditioning studies demonstrated possible hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients with TST. Functional MRI studies have further shown that patients with TST have reduced functional connectivity in the cerebellum, similar to patients with DTS and ET. Due to variable methodologies and the sparsity of functional MRI studies in TST, it remains uncertain if patients with TST share the connectivity abnormalities between the cortical or subcortical areas that have been demonstrated in patients with DTS. Comprehensive electrophysiological and functional neuroimaging studies may help to elucidate the pathophysiology of TST.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mini-review of the pathophysiology of task-specific tremor: insights from electrophysiological and neuroimaging findings\",\"authors\":\"Yih-Chih Jacinta Kuo, Kai-Hsiang Stanley Chen\",\"doi\":\"10.3389/dyst.2023.11347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task-specific tremor (TST) is a specific type of tremor that occurs when performing or attempting to perform a specific task, such as writing or playing a musical instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only be induced by conducting a specific task, while others can be elicited when adopting a particular position simulating a task. The pathophysiology of TST is controversial. Whether TST is an isolated tremor syndrome, a spectrum of dystonic tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from electrophysiological studies suggests that TST patients have normal reciprocal inhibition responses but abnormal motor cortical excitability, especially relating to the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery study and eyeblink classical conditioning studies demonstrated possible hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients with TST. Functional MRI studies have further shown that patients with TST have reduced functional connectivity in the cerebellum, similar to patients with DTS and ET. Due to variable methodologies and the sparsity of functional MRI studies in TST, it remains uncertain if patients with TST share the connectivity abnormalities between the cortical or subcortical areas that have been demonstrated in patients with DTS. Comprehensive electrophysiological and functional neuroimaging studies may help to elucidate the pathophysiology of TST.\",\"PeriodicalId\":72853,\"journal\":{\"name\":\"Dystonia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dystonia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/dyst.2023.11347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dystonia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/dyst.2023.11347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

任务特异性震颤(TST)是一种特定类型的震颤,发生在执行或试图执行特定任务时,如写作或演奏乐器。TST的临床实体仍然是异质性的。有些测试只能在执行特定任务时产生,而另一些则可以在采用特定位置模拟任务时产生。TST的病理生理学存在争议。TST是孤立性震颤综合征、肌张力障碍震颤综合征(DTS)还是特发性震颤(ET)尚不清楚。来自电生理研究的证据表明,TST患者具有正常的相互抑制反应,但运动皮质兴奋性异常,特别是与适应不良的长间隔皮质内抑制回路有关。眨眼恢复研究和眨眼经典条件反射研究表明,TST患者可能存在脑干回路的高兴奋性和小脑功能障碍。功能性MRI研究进一步表明,与DTS和ET患者类似,TST患者的小脑功能连通性降低。由于TST方法的变化和功能性MRI研究的稀缺性,尚不确定TST患者是否与DTS患者一样存在皮质或皮质下区域之间的连通性异常。全面的电生理和功能神经影像学研究可能有助于阐明TST的病理生理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mini-review of the pathophysiology of task-specific tremor: insights from electrophysiological and neuroimaging findings
Task-specific tremor (TST) is a specific type of tremor that occurs when performing or attempting to perform a specific task, such as writing or playing a musical instrument. The clinical entity of TST remains heterogeneous. Some TSTs can only be induced by conducting a specific task, while others can be elicited when adopting a particular position simulating a task. The pathophysiology of TST is controversial. Whether TST is an isolated tremor syndrome, a spectrum of dystonic tremor syndrome (DTS), or essential tremor (ET) is not yet clear. Evidence from electrophysiological studies suggests that TST patients have normal reciprocal inhibition responses but abnormal motor cortical excitability, especially relating to the maladaptive long-interval intracortical inhibitory circuitry. The blink recovery study and eyeblink classical conditioning studies demonstrated possible hyperexcitability of the brainstem circuits and cerebellar dysfunction in patients with TST. Functional MRI studies have further shown that patients with TST have reduced functional connectivity in the cerebellum, similar to patients with DTS and ET. Due to variable methodologies and the sparsity of functional MRI studies in TST, it remains uncertain if patients with TST share the connectivity abnormalities between the cortical or subcortical areas that have been demonstrated in patients with DTS. Comprehensive electrophysiological and functional neuroimaging studies may help to elucidate the pathophysiology of TST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of botulinum neurotoxin on regularity of head oscillations in cervical dystonia ε-sarcoglycan myoclonus-dystonia—overview of neurophysiological, behavioral, and imaging characteristics Unraveling dystonia circuitry in rodent models using novel neuromodulation techniques Piecing together a complex puzzle: 5 key challenges in basic dystonia research Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1