结合局部质量位移和非局部热传导的非经典电热弹性理论

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2023-11-07 DOI:10.1177/10812865231201132
Olha Hrytsyna, Yuriy Tokovyy, Maryan Hrytsyna
{"title":"结合局部质量位移和非局部热传导的非经典电热弹性理论","authors":"Olha Hrytsyna, Yuriy Tokovyy, Maryan Hrytsyna","doi":"10.1177/10812865231201132","DOIUrl":null,"url":null,"abstract":"A non-classical local gradient theory of nonferromagnetic thermoelastic dielectrics is presented, incorporating both the local mass-displacement process and the heat-flux gradient effect. The process of local mass displacement is related to the changes in material microstructure. The nonlocal heat conduction law is also addressed in the model. Thus, the generalized relationship between the higher-grade heat and entropy fluxes is adopted. The gradient-type constitutive relations and governing equations are derived using the fundamental principles of continuum mechanics, non-equilibrium thermodynamics, and electrodynamics. Due to the contribution of higher-grade flux, the nonlocal law of heat conduction is obtained. The constitutive relations for isotropic materials with the corresponding additional material constants are derived. To illustrate the local gradient theory and to show the electro-thermo-mechanical coupling effect in isotropic materials, a straightforward problem is analytically solved for a layered non-piezoelectric structure under non-uniform temperature distribution. The analytical results reveal that the thermal polarization effect can also be pronounced in isotropic materials. To illustrate the model considering the effect of nonlocal heat conduction, the propagation of spherical thermoelastic harmonic waves in a homogeneous and isotropic elastic medium with non-classical heat conduction law is studied.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"192 3","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-classical theory of electro-thermo-elasticity incorporating local mass displacement and nonlocal heat conduction\",\"authors\":\"Olha Hrytsyna, Yuriy Tokovyy, Maryan Hrytsyna\",\"doi\":\"10.1177/10812865231201132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-classical local gradient theory of nonferromagnetic thermoelastic dielectrics is presented, incorporating both the local mass-displacement process and the heat-flux gradient effect. The process of local mass displacement is related to the changes in material microstructure. The nonlocal heat conduction law is also addressed in the model. Thus, the generalized relationship between the higher-grade heat and entropy fluxes is adopted. The gradient-type constitutive relations and governing equations are derived using the fundamental principles of continuum mechanics, non-equilibrium thermodynamics, and electrodynamics. Due to the contribution of higher-grade flux, the nonlocal law of heat conduction is obtained. The constitutive relations for isotropic materials with the corresponding additional material constants are derived. To illustrate the local gradient theory and to show the electro-thermo-mechanical coupling effect in isotropic materials, a straightforward problem is analytically solved for a layered non-piezoelectric structure under non-uniform temperature distribution. The analytical results reveal that the thermal polarization effect can also be pronounced in isotropic materials. To illustrate the model considering the effect of nonlocal heat conduction, the propagation of spherical thermoelastic harmonic waves in a homogeneous and isotropic elastic medium with non-classical heat conduction law is studied.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"192 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231201132\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231201132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了非铁磁热弹性介质的非经典局部梯度理论,将局部质量位移过程和热流梯度效应结合起来。局部质量位移过程与材料微观结构的变化有关。模型还讨论了非局部热传导规律。因此,采用高阶热通量与熵通量之间的广义关系。利用连续介质力学、非平衡热力学和电动力学的基本原理推导出梯度型本构关系和控制方程。由于高阶通量的贡献,得到了非局部热传导规律。导出了具有相应附加材料常数的各向同性材料的本构关系。为了说明局部梯度理论和显示各向同性材料中的电-热-力耦合效应,对温度分布不均匀的层状非压电结构的一个简单问题进行了解析求解。分析结果表明,在各向同性材料中也存在明显的热极化效应。为了说明考虑非局部热传导影响的模型,研究了球面热弹性谐波在非经典热传导规律的均匀各向同性弹性介质中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-classical theory of electro-thermo-elasticity incorporating local mass displacement and nonlocal heat conduction
A non-classical local gradient theory of nonferromagnetic thermoelastic dielectrics is presented, incorporating both the local mass-displacement process and the heat-flux gradient effect. The process of local mass displacement is related to the changes in material microstructure. The nonlocal heat conduction law is also addressed in the model. Thus, the generalized relationship between the higher-grade heat and entropy fluxes is adopted. The gradient-type constitutive relations and governing equations are derived using the fundamental principles of continuum mechanics, non-equilibrium thermodynamics, and electrodynamics. Due to the contribution of higher-grade flux, the nonlocal law of heat conduction is obtained. The constitutive relations for isotropic materials with the corresponding additional material constants are derived. To illustrate the local gradient theory and to show the electro-thermo-mechanical coupling effect in isotropic materials, a straightforward problem is analytically solved for a layered non-piezoelectric structure under non-uniform temperature distribution. The analytical results reveal that the thermal polarization effect can also be pronounced in isotropic materials. To illustrate the model considering the effect of nonlocal heat conduction, the propagation of spherical thermoelastic harmonic waves in a homogeneous and isotropic elastic medium with non-classical heat conduction law is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1