人工智能架构与地球系统可预测性协同设计的观点

Maruti K. Mudunuru, James Ang, Mahantesh Halappanavar, Simon D. Hammond, Maya B. Gokhale, James C. Hoe, Tushar Krishna, Sarat S. Sreepathi, Matthew R. Norman, Ivy B. Peng, Philip W. Jones
{"title":"人工智能架构与地球系统可预测性协同设计的观点","authors":"Maruti K. Mudunuru, James Ang, Mahantesh Halappanavar, Simon D. Hammond, Maya B. Gokhale, James C. Hoe, Tushar Krishna, Sarat S. Sreepathi, Matthew R. Norman, Ivy B. Peng, Philip W. Jones","doi":"10.1175/aies-d-23-0029.1","DOIUrl":null,"url":null,"abstract":"Abstract Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop series. From this workshop, a critical conclusion that the DOE BER and ASCR community came to is the requirement to develop a new paradigm for Earth system predictability focused on enabling artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx. The BER’s ‘Model-Experimentation’, ModEx, is an iterative approach that enables process models to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect measurement and observation data, which are subsequently used to parameterize, drive, and test model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP workshop series. This paper discusses the topic of the ‘AI Architectures and Co-design’ session and associated outcomes. The AI Architectures and Co-design session included two invited talks, two plenary discussion panels, and three breakout rooms that covered specific topics, including: (1) DOE high-performance computing (HPC) Systems, (2) Cloud HPC Systems, and (3) Edge computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives on potential research in this co-design area that can be achieved by synergies with the other 16 session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled sensor integration into earth system measurements and observations. Such perspectives are a distinguishing aspect of this paper.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspectives on AI Architectures and Co-design for Earth System Predictability\",\"authors\":\"Maruti K. Mudunuru, James Ang, Mahantesh Halappanavar, Simon D. Hammond, Maya B. Gokhale, James C. Hoe, Tushar Krishna, Sarat S. Sreepathi, Matthew R. Norman, Ivy B. Peng, Philip W. Jones\",\"doi\":\"10.1175/aies-d-23-0029.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop series. From this workshop, a critical conclusion that the DOE BER and ASCR community came to is the requirement to develop a new paradigm for Earth system predictability focused on enabling artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx. The BER’s ‘Model-Experimentation’, ModEx, is an iterative approach that enables process models to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect measurement and observation data, which are subsequently used to parameterize, drive, and test model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP workshop series. This paper discusses the topic of the ‘AI Architectures and Co-design’ session and associated outcomes. The AI Architectures and Co-design session included two invited talks, two plenary discussion panels, and three breakout rooms that covered specific topics, including: (1) DOE high-performance computing (HPC) Systems, (2) Cloud HPC Systems, and (3) Edge computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives on potential research in this co-design area that can be achieved by synergies with the other 16 session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled sensor integration into earth system measurements and observations. Such perspectives are a distinguishing aspect of this paper.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-23-0029.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0029.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,美国能源部(DOE)、科学、生物和环境研究办公室(BER)和高级科学计算研究(ASCR)项目组织并举办了“面向地球系统可预测性的人工智能(AI4ESP)”系列研讨会。从这次研讨会中,DOE BER和ASCR社区得出的一个关键结论是,需要开发一种新的地球系统可预测性范式,重点是在现场、实验室、建模和分析活动中实现人工智能(AI),称为ModEx。BER的“模型实验”,即ModEx,是一种迭代方法,使过程模型能够产生假设。开发的假设告知现场和实验室收集测量和观察数据的努力,这些数据随后用于参数化、驱动和测试模型(例如,基于过程的)预测。本次AI4ESP系列研讨会共举办了17场技术会议。本文讨论了“人工智能架构和协同设计”会议的主题和相关成果。人工智能架构和协同设计会议包括两个特邀演讲、两个全体讨论小组和三个分组讨论室,涵盖了具体主题,包括:(1)美国能源部高性能计算(HPC)系统、(2)云高性能计算系统和(3)边缘计算和物联网(IoT)。我们还就这一共同设计领域的潜在研究提供前瞻性的想法和观点,这些研究可以通过与其他16个会议主题的协同作用来实现。这些想法包括以下主题:(1)重新构想协同设计,(2)数据采集到分布,(3)集成AI/ML和其他数据分析(如不确定性量化与地球系统建模和仿真)的异构HPC解决方案,以及(4)将AI支持的传感器集成到地球系统测量和观测中。这些观点是本文的一个显著方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perspectives on AI Architectures and Co-design for Earth System Predictability
Abstract Recently, the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research (BER), and Advanced Scientific Computing Research (ASCR) programs organized and held the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop series. From this workshop, a critical conclusion that the DOE BER and ASCR community came to is the requirement to develop a new paradigm for Earth system predictability focused on enabling artificial intelligence (AI) across the field, lab, modeling, and analysis activities, called ModEx. The BER’s ‘Model-Experimentation’, ModEx, is an iterative approach that enables process models to generate hypotheses. The developed hypotheses inform field and laboratory efforts to collect measurement and observation data, which are subsequently used to parameterize, drive, and test model (e.g., process-based) predictions. A total of 17 technical sessions were held in this AI4ESP workshop series. This paper discusses the topic of the ‘AI Architectures and Co-design’ session and associated outcomes. The AI Architectures and Co-design session included two invited talks, two plenary discussion panels, and three breakout rooms that covered specific topics, including: (1) DOE high-performance computing (HPC) Systems, (2) Cloud HPC Systems, and (3) Edge computing and Internet of Things (IoT). We also provide forward-looking ideas and perspectives on potential research in this co-design area that can be achieved by synergies with the other 16 session topics. These ideas include topics such as: (1) reimagining co-design, (2) data acquisition to distribution, (3) heterogeneous HPC solutions for integration of AI/ML and other data analytics like uncertainty quantification with earth system modeling and simulation, and (4) AI-enabled sensor integration into earth system measurements and observations. Such perspectives are a distinguishing aspect of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1