forrest GUMP:用于验证和解释的工具

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal on Software Tools for Technology Transfer Pub Date : 2023-05-30 DOI:10.1007/s10009-023-00702-5
Alnis Murtovi, Alexander Bainczyk, Gerrit Nolte, Maximilian Schlüter, Bernhard Steffen
{"title":"forrest GUMP:用于验证和解释的工具","authors":"Alnis Murtovi, Alexander Bainczyk, Gerrit Nolte, Maximilian Schlüter, Bernhard Steffen","doi":"10.1007/s10009-023-00702-5","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present Forest GUMP (for Generalized, Unifying Merge Process) a tool for verification and precise explanation of Random forests. Besides pre/post-condition-based verification and equivalence checking, Forest GUMP also supports three concepts of explanation, the well-known model explanation and outcome explanation , as well as class characterization , i.e., the precise characterization of all samples that are equally classified. Key technology to achieve these results is algebraic aggregation, i.e., the transformation of a Random Forest into a semantically equivalent, concise white-box representation in terms of Algebraic Decision Diagrams (ADDs). The paper sketches the method and demonstrates the use of Forest GUMP along illustrative examples. This way readers should acquire an intuition about the tool, and the way how it should be used to increase the understanding not only of the considered dataset, but also of the character of Random Forests and the ADD technology, here enriched to comprise infeasible path elimination. As Forest GUMP is publicly available all experiments can be reproduced, modified, and complemented using any dataset that is available in the ARFF format.","PeriodicalId":14395,"journal":{"name":"International Journal on Software Tools for Technology Transfer","volume":"45 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Forest GUMP: a tool for verification and explanation\",\"authors\":\"Alnis Murtovi, Alexander Bainczyk, Gerrit Nolte, Maximilian Schlüter, Bernhard Steffen\",\"doi\":\"10.1007/s10009-023-00702-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we present Forest GUMP (for Generalized, Unifying Merge Process) a tool for verification and precise explanation of Random forests. Besides pre/post-condition-based verification and equivalence checking, Forest GUMP also supports three concepts of explanation, the well-known model explanation and outcome explanation , as well as class characterization , i.e., the precise characterization of all samples that are equally classified. Key technology to achieve these results is algebraic aggregation, i.e., the transformation of a Random Forest into a semantically equivalent, concise white-box representation in terms of Algebraic Decision Diagrams (ADDs). The paper sketches the method and demonstrates the use of Forest GUMP along illustrative examples. This way readers should acquire an intuition about the tool, and the way how it should be used to increase the understanding not only of the considered dataset, but also of the character of Random Forests and the ADD technology, here enriched to comprise infeasible path elimination. As Forest GUMP is publicly available all experiments can be reproduced, modified, and complemented using any dataset that is available in the ARFF format.\",\"PeriodicalId\":14395,\"journal\":{\"name\":\"International Journal on Software Tools for Technology Transfer\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Software Tools for Technology Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10009-023-00702-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Software Tools for Technology Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10009-023-00702-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文提出了一种用于验证和精确解释随机森林的工具Forest GUMP (Generalized, unified Merge Process)。除了基于前/后条件的验证和等价性检查外,Forest GUMP还支持三个解释概念,即众所周知的模型解释和结果解释,以及类表征,即对所有同等分类的样本进行精确表征。实现这些结果的关键技术是代数聚合,即将随机森林转换为语义等效的、简洁的代数决策图(代数决策图)的白盒表示。本文概述了该方法,并通过举例说明了Forest GUMP的使用。通过这种方式,读者应该获得对工具的直觉,以及如何使用它来增加对所考虑的数据集的理解,以及对随机森林和ADD技术特征的理解,这里丰富了包括不可行的路径消除。由于Forest GUMP是公开可用的,所有实验都可以使用ARFF格式的任何数据集进行复制、修改和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forest GUMP: a tool for verification and explanation
Abstract In this paper, we present Forest GUMP (for Generalized, Unifying Merge Process) a tool for verification and precise explanation of Random forests. Besides pre/post-condition-based verification and equivalence checking, Forest GUMP also supports three concepts of explanation, the well-known model explanation and outcome explanation , as well as class characterization , i.e., the precise characterization of all samples that are equally classified. Key technology to achieve these results is algebraic aggregation, i.e., the transformation of a Random Forest into a semantically equivalent, concise white-box representation in terms of Algebraic Decision Diagrams (ADDs). The paper sketches the method and demonstrates the use of Forest GUMP along illustrative examples. This way readers should acquire an intuition about the tool, and the way how it should be used to increase the understanding not only of the considered dataset, but also of the character of Random Forests and the ADD technology, here enriched to comprise infeasible path elimination. As Forest GUMP is publicly available all experiments can be reproduced, modified, and complemented using any dataset that is available in the ARFF format.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
6.70%
发文量
39
期刊介绍: The International Journal on Software Tools for Technology Transfer (STTT) provides a forum for the discussion of all aspects of tools supporting the development of computer systems. It offers, above all, a tool-oriented link between academic research and industrial practice. Tool support for the development of reliable and correct computer-based systems is of growing importance, and a wealth of design methodologies, algorithms, and associated tools have been developed in different areas of computer science. However, each area has its own culture and terminology, preventing researchers from taking advantage of the results obtained by colleagues in other fields. Tool builders are often unaware of the work done by others, and thus unable to apply it. The situation is even more critical when considering the transfer of new technology into industrial practice.
期刊最新文献
A causal, time-independent synchronization pattern for collective adaptive systems A modal approach to conscious social agents Rigorous engineering of collective adaptive systems – 2nd special section Generating adaptation rule-specific neural networks A kinetic approach to investigate the collective dynamics of multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1