Nando Metzger, Mehmet Özgür Türkoglu, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler
{"title":"从卫星图像预测城市变化","authors":"Nando Metzger, Mehmet Özgür Türkoglu, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler","doi":"10.1007/s41064-023-00258-8","DOIUrl":null,"url":null,"abstract":"Abstract Forecasting where and when new buildings will emerge is a rather unexplored topic, but one that is very useful in many disciplines such as urban planning, agriculture, resource management, and even autonomous flying. In the present work, we present a method that accomplishes this task with a deep neural network and a custom pretraining procedure. In Stage 1 , a U-Net backbone is pretrained within a Siamese network architecture that aims to solve a (building) change detection task. In Stage 2 , the backbone is repurposed to forecast the emergence of new buildings based solely on one image acquired before its construction. Furthermore, we also present a model that forecasts the time range within which the change will occur. We validate our approach using the SpaceNet7 dataset, which covers an area of 960 km $$^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msup> </mml:math> at 24 points in time across 2 years. In our experiments, we found that our proposed pretraining method consistently outperforms the traditional pretraining using the ImageNet dataset. We also show that it is to some degree possible to predict in advance when building changes will occur.","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"442 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban Change Forecasting from Satellite Images\",\"authors\":\"Nando Metzger, Mehmet Özgür Türkoglu, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler\",\"doi\":\"10.1007/s41064-023-00258-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Forecasting where and when new buildings will emerge is a rather unexplored topic, but one that is very useful in many disciplines such as urban planning, agriculture, resource management, and even autonomous flying. In the present work, we present a method that accomplishes this task with a deep neural network and a custom pretraining procedure. In Stage 1 , a U-Net backbone is pretrained within a Siamese network architecture that aims to solve a (building) change detection task. In Stage 2 , the backbone is repurposed to forecast the emergence of new buildings based solely on one image acquired before its construction. Furthermore, we also present a model that forecasts the time range within which the change will occur. We validate our approach using the SpaceNet7 dataset, which covers an area of 960 km $$^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msup> </mml:math> at 24 points in time across 2 years. In our experiments, we found that our proposed pretraining method consistently outperforms the traditional pretraining using the ImageNet dataset. We also show that it is to some degree possible to predict in advance when building changes will occur.\",\"PeriodicalId\":56035,\"journal\":{\"name\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"volume\":\"442 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41064-023-00258-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41064-023-00258-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Abstract Forecasting where and when new buildings will emerge is a rather unexplored topic, but one that is very useful in many disciplines such as urban planning, agriculture, resource management, and even autonomous flying. In the present work, we present a method that accomplishes this task with a deep neural network and a custom pretraining procedure. In Stage 1 , a U-Net backbone is pretrained within a Siamese network architecture that aims to solve a (building) change detection task. In Stage 2 , the backbone is repurposed to forecast the emergence of new buildings based solely on one image acquired before its construction. Furthermore, we also present a model that forecasts the time range within which the change will occur. We validate our approach using the SpaceNet7 dataset, which covers an area of 960 km $$^2$$ 2 at 24 points in time across 2 years. In our experiments, we found that our proposed pretraining method consistently outperforms the traditional pretraining using the ImageNet dataset. We also show that it is to some degree possible to predict in advance when building changes will occur.
期刊介绍:
PFG is an international scholarly journal covering the progress and application of photogrammetric methods, remote sensing technology and the interconnected field of geoinformation science. It places special editorial emphasis on the communication of new methodologies in data acquisition and new approaches to optimized processing and interpretation of all types of data which were acquired by photogrammetric methods, remote sensing, image processing and the computer-aided interpretation of such data in general. The journal hence addresses both researchers and students of these disciplines at academic institutions and universities as well as the downstream users in both the private sector and public administration.
Founded in 1926 under the former name Bildmessung und Luftbildwesen, PFG is worldwide the oldest journal on photogrammetry. It is the official journal of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).