XGBoost用于H2S检测的介孔SnO2量子点薄膜气体传感器的制备与优化

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2023-10-05 DOI:10.3390/chemosensors11100525
Jianqiao Liu, Yujia Wang, Yue Sun, Kuanguang Zhang, Yang Ding, Ce Fu, Junsheng Wang
{"title":"XGBoost用于H2S检测的介孔SnO2量子点薄膜气体传感器的制备与优化","authors":"Jianqiao Liu, Yujia Wang, Yue Sun, Kuanguang Zhang, Yang Ding, Ce Fu, Junsheng Wang","doi":"10.3390/chemosensors11100525","DOIUrl":null,"url":null,"abstract":"Tin oxide (SnO2) is a traditional gas-sensitive semiconductor with excellent response to various gases. However, its sensor performances are attenuated by the utility factor during gas diffusion in the sensing body. Therefore, the rational design of microstructure of devices is attractive and necessary because it may provide a sensible and controllable microstructure, which facilitates gas diffusion and inhibits the utility factor. Herein, the mesoporous tin oxide (MPTD) quantum dot thin film for H2S gas sensors is prepared by a facile route, which creates a mesoporous microstructure for thin films by the thermal decomposition of NH4Cl. The pore size of the thin films is controlled to be 19.36–40.13 nm. The mesoporous microstructure exhibits enhanced gas-sensing properties amounting to a 30-fold increase in response and 1/3 reduction in recovery time in H2S detection at room temperature (25 °C), with a limit of detection of 0.4 ppm. To determine the importance of sensor parameters such as pore size, film thickness, and grain size, an eXtreme Gradient Boosting (XGBoost) algorithm model was developed to examine the feature importance of each parameter on the gas-sensing performance of the MPTD sensors. The visual illustration of parameter importance is revealed to facilitate the optimization of technical preparation parameters as well as the rational design of semiconductor gas sensors.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"22 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis\",\"authors\":\"Jianqiao Liu, Yujia Wang, Yue Sun, Kuanguang Zhang, Yang Ding, Ce Fu, Junsheng Wang\",\"doi\":\"10.3390/chemosensors11100525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin oxide (SnO2) is a traditional gas-sensitive semiconductor with excellent response to various gases. However, its sensor performances are attenuated by the utility factor during gas diffusion in the sensing body. Therefore, the rational design of microstructure of devices is attractive and necessary because it may provide a sensible and controllable microstructure, which facilitates gas diffusion and inhibits the utility factor. Herein, the mesoporous tin oxide (MPTD) quantum dot thin film for H2S gas sensors is prepared by a facile route, which creates a mesoporous microstructure for thin films by the thermal decomposition of NH4Cl. The pore size of the thin films is controlled to be 19.36–40.13 nm. The mesoporous microstructure exhibits enhanced gas-sensing properties amounting to a 30-fold increase in response and 1/3 reduction in recovery time in H2S detection at room temperature (25 °C), with a limit of detection of 0.4 ppm. To determine the importance of sensor parameters such as pore size, film thickness, and grain size, an eXtreme Gradient Boosting (XGBoost) algorithm model was developed to examine the feature importance of each parameter on the gas-sensing performance of the MPTD sensors. The visual illustration of parameter importance is revealed to facilitate the optimization of technical preparation parameters as well as the rational design of semiconductor gas sensors.\",\"PeriodicalId\":10057,\"journal\":{\"name\":\"Chemosensors\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemosensors11100525\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11100525","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化锡(SnO2)是一种传统的气敏半导体,对各种气体都有很好的响应。然而,由于气体在传感体内扩散过程中的效用因子,其传感器性能受到影响。因此,合理设计器件的微观结构是有吸引力和必要的,因为它可以提供一个合理和可控的微观结构,有利于气体扩散,抑制效用因子。本文采用简单的方法制备了用于H2S气体传感器的介孔氧化锡(MPTD)量子点薄膜,该薄膜通过NH4Cl的热分解形成介孔微观结构。薄膜的孔径控制在19.36 ~ 40.13 nm之间。在室温(25°C)下,介孔微观结构表现出增强的气敏特性,在H2S检测中,响应速度提高了30倍,恢复时间缩短了1/3,检测限为0.4 ppm。为了确定孔径、膜厚和粒度等传感器参数的重要性,开发了一种极端梯度增强(XGBoost)算法模型,以检查每个参数对MPTD传感器气敏性能的特征重要性。为优化工艺制备参数,合理设计半导体气体传感器,提供了参数重要性的直观说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Optimization of Mesoporous SnO2 Quantum Dot Thin Film Gas Sensors for H2S Detection Using XGBoost Parameter Importance Analysis
Tin oxide (SnO2) is a traditional gas-sensitive semiconductor with excellent response to various gases. However, its sensor performances are attenuated by the utility factor during gas diffusion in the sensing body. Therefore, the rational design of microstructure of devices is attractive and necessary because it may provide a sensible and controllable microstructure, which facilitates gas diffusion and inhibits the utility factor. Herein, the mesoporous tin oxide (MPTD) quantum dot thin film for H2S gas sensors is prepared by a facile route, which creates a mesoporous microstructure for thin films by the thermal decomposition of NH4Cl. The pore size of the thin films is controlled to be 19.36–40.13 nm. The mesoporous microstructure exhibits enhanced gas-sensing properties amounting to a 30-fold increase in response and 1/3 reduction in recovery time in H2S detection at room temperature (25 °C), with a limit of detection of 0.4 ppm. To determine the importance of sensor parameters such as pore size, film thickness, and grain size, an eXtreme Gradient Boosting (XGBoost) algorithm model was developed to examine the feature importance of each parameter on the gas-sensing performance of the MPTD sensors. The visual illustration of parameter importance is revealed to facilitate the optimization of technical preparation parameters as well as the rational design of semiconductor gas sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.The journal is indexed in Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Engineering Village and other databases.
期刊最新文献
Prostate Cancer Detection in Colombian Patients through E-Senses Devices in Exhaled Breath and Urine Samples Origami Paper-Based Electrochemical Immunosensor with Carbon Nanohorns-Decorated Nanoporous Gold for Zearalenone Detection Spectroscopy and Chemometrics for Conformity Analysis of e-Liquids: Illegal Additive Detection and Nicotine Characterization Nanorods Assembled Hierarchical Bi2S3 for Highly Sensitive Detection of Trace NO2 at Room Temperature Evaluation of the Essential Oil Composition of Five Thymus Species Native to Greece
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1