S. Simões, A. L. Gonçalves, T. Hefin Jones, J. P. Sousa, C. Canhoto
{"title":"溪流-河岸互通:不同暴露模式对垃圾分解的影响","authors":"S. Simões, A. L. Gonçalves, T. Hefin Jones, J. P. Sousa, C. Canhoto","doi":"10.1007/s10452-023-10067-1","DOIUrl":null,"url":null,"abstract":"<div><p>Resource fluxes at the stream–riparian interface are a vital contributor to both systems’ energy budgets. The effect of distinct litter exposure patterns—direction of the riparia–stream movement and duration of exposure at each habitat—however, remains to be elucidated. In this field experiment, oak leaves in fine and coarse mesh bags were either exposed to a stream-to-riparia or riparia-to-stream movement sequence for distinct periods (2:6, 4:4, or 6:2 weeks). After 8 weeks, ash-free mass loss, microbial activity, and fungal biomass were compared in leaves undergoing inverse movement sequences (e.g., 2-week exposure to the riparian area at the beginning vs. end of the colonization period). Mass loss in coarse mesh bags was negatively affected when leaves were previously exposed to a short (2 weeks) terrestrial pre-conditioning period, despite higher microbial activity and fungal biomass, when compared to the inverse movement. This effect on mass loss was neutralized by longer terrestrial exposures that likely allowed for a more thorough conditioning of the leaves, through extended leaching and terrestrial microbial colonization. Our results suggest that terrestrial pre-conditioning periods of < 2 weeks lead to litter-quality legacy effects in tough leaves, to which aquatic communities respond through lower substrate degradation efficiency, hindering stream decomposition. Contrastingly, oak aquatic pre-conditioning, regardless of duration, provides riparian communities with a high-quality resource, promoting litter processing through grazing behavior. As climate-induced hydrological shifts may result in altered provision/quality of detritus subsidies at the stream–riparia interface, we suggest that assessments of decomposition dynamics should consider the entire litter conditioning history.</p></div>","PeriodicalId":8262,"journal":{"name":"Aquatic Ecology","volume":"58 2","pages":"313 - 322"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10452-023-10067-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Reciprocal stream–riparian fluxes: effects of distinct exposure patterns on litter decomposition\",\"authors\":\"S. Simões, A. L. Gonçalves, T. Hefin Jones, J. P. Sousa, C. Canhoto\",\"doi\":\"10.1007/s10452-023-10067-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resource fluxes at the stream–riparian interface are a vital contributor to both systems’ energy budgets. The effect of distinct litter exposure patterns—direction of the riparia–stream movement and duration of exposure at each habitat—however, remains to be elucidated. In this field experiment, oak leaves in fine and coarse mesh bags were either exposed to a stream-to-riparia or riparia-to-stream movement sequence for distinct periods (2:6, 4:4, or 6:2 weeks). After 8 weeks, ash-free mass loss, microbial activity, and fungal biomass were compared in leaves undergoing inverse movement sequences (e.g., 2-week exposure to the riparian area at the beginning vs. end of the colonization period). Mass loss in coarse mesh bags was negatively affected when leaves were previously exposed to a short (2 weeks) terrestrial pre-conditioning period, despite higher microbial activity and fungal biomass, when compared to the inverse movement. This effect on mass loss was neutralized by longer terrestrial exposures that likely allowed for a more thorough conditioning of the leaves, through extended leaching and terrestrial microbial colonization. Our results suggest that terrestrial pre-conditioning periods of < 2 weeks lead to litter-quality legacy effects in tough leaves, to which aquatic communities respond through lower substrate degradation efficiency, hindering stream decomposition. Contrastingly, oak aquatic pre-conditioning, regardless of duration, provides riparian communities with a high-quality resource, promoting litter processing through grazing behavior. As climate-induced hydrological shifts may result in altered provision/quality of detritus subsidies at the stream–riparia interface, we suggest that assessments of decomposition dynamics should consider the entire litter conditioning history.</p></div>\",\"PeriodicalId\":8262,\"journal\":{\"name\":\"Aquatic Ecology\",\"volume\":\"58 2\",\"pages\":\"313 - 322\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10452-023-10067-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10452-023-10067-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10452-023-10067-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Reciprocal stream–riparian fluxes: effects of distinct exposure patterns on litter decomposition
Resource fluxes at the stream–riparian interface are a vital contributor to both systems’ energy budgets. The effect of distinct litter exposure patterns—direction of the riparia–stream movement and duration of exposure at each habitat—however, remains to be elucidated. In this field experiment, oak leaves in fine and coarse mesh bags were either exposed to a stream-to-riparia or riparia-to-stream movement sequence for distinct periods (2:6, 4:4, or 6:2 weeks). After 8 weeks, ash-free mass loss, microbial activity, and fungal biomass were compared in leaves undergoing inverse movement sequences (e.g., 2-week exposure to the riparian area at the beginning vs. end of the colonization period). Mass loss in coarse mesh bags was negatively affected when leaves were previously exposed to a short (2 weeks) terrestrial pre-conditioning period, despite higher microbial activity and fungal biomass, when compared to the inverse movement. This effect on mass loss was neutralized by longer terrestrial exposures that likely allowed for a more thorough conditioning of the leaves, through extended leaching and terrestrial microbial colonization. Our results suggest that terrestrial pre-conditioning periods of < 2 weeks lead to litter-quality legacy effects in tough leaves, to which aquatic communities respond through lower substrate degradation efficiency, hindering stream decomposition. Contrastingly, oak aquatic pre-conditioning, regardless of duration, provides riparian communities with a high-quality resource, promoting litter processing through grazing behavior. As climate-induced hydrological shifts may result in altered provision/quality of detritus subsidies at the stream–riparia interface, we suggest that assessments of decomposition dynamics should consider the entire litter conditioning history.
期刊介绍:
Aquatic Ecology publishes timely, peer-reviewed original papers relating to the ecology of fresh, brackish, estuarine and marine environments. Papers on fundamental and applied novel research in both the field and the laboratory, including descriptive or experimental studies, will be included in the journal. Preference will be given to studies that address timely and current topics and are integrative and critical in approach. We discourage papers that describe presence and abundance of aquatic biota in local habitats as well as papers that are pure systematic.
The journal provides a forum for the aquatic ecologist - limnologist and oceanologist alike- to discuss ecological issues related to processes and structures at different integration levels from individuals to populations, to communities and entire ecosystems.