优化单调基数约束集函数的线性时间流算法

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Foundations of Computer Science Pub Date : 2023-10-05 DOI:10.1142/s0129054123410083
Min Cui, Donglei Du, Ling Gai, Ruiqi Yang
{"title":"优化单调基数约束集函数的线性时间流算法","authors":"Min Cui, Donglei Du, Ling Gai, Ruiqi Yang","doi":"10.1142/s0129054123410083","DOIUrl":null,"url":null,"abstract":"Many real-world applications arising from social networks, personalized recommendations, and others, require extracting a relatively small but broadly representative portion of massive data sets. Such problems can often be formulated as maximizing a monotone set function with cardinality constraints. In this paper, we consider a streaming model where elements arrive quickly over time, and create an effective, and low-memory algorithm. First, we provide the first single-pass linear-time algorithm, which is a a deterministic algorithm, achieves an approximation ratio of [Formula: see text] for any [Formula: see text] with a query complexity of [Formula: see text] and a memory complexity of [Formula: see text], where [Formula: see text] is a positive integer and [Formula: see text] is the submodularity ratio. However, the algorithm may produce less-than-ideal results. Our next result is to describe a multi-streaming algorithm, which is the first deterministic algorithm to attain an approximation ratio of [Formula: see text] with linear query complexity.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Linear-Time Streaming Algorithms for Maximizing Monotone Cardinality-Constrained Set Functions\",\"authors\":\"Min Cui, Donglei Du, Ling Gai, Ruiqi Yang\",\"doi\":\"10.1142/s0129054123410083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world applications arising from social networks, personalized recommendations, and others, require extracting a relatively small but broadly representative portion of massive data sets. Such problems can often be formulated as maximizing a monotone set function with cardinality constraints. In this paper, we consider a streaming model where elements arrive quickly over time, and create an effective, and low-memory algorithm. First, we provide the first single-pass linear-time algorithm, which is a a deterministic algorithm, achieves an approximation ratio of [Formula: see text] for any [Formula: see text] with a query complexity of [Formula: see text] and a memory complexity of [Formula: see text], where [Formula: see text] is a positive integer and [Formula: see text] is the submodularity ratio. However, the algorithm may produce less-than-ideal results. Our next result is to describe a multi-streaming algorithm, which is the first deterministic algorithm to attain an approximation ratio of [Formula: see text] with linear query complexity.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054123410083\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054123410083","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

来自社交网络、个性化推荐等的许多实际应用程序都需要从大量数据集中提取相对较小但具有广泛代表性的部分。这类问题通常可以表述为具有基数约束的单调集函数的最大化。在本文中,我们考虑了一个元素随时间快速到达的流模型,并创建了一个有效的低内存算法。首先,我们提供了第一个单遍线性时间算法,该算法是一种确定性算法,对任意一个查询复杂度为[Formula: see text]、内存复杂度为[Formula: see text]的[Formula: see text]实现了近似比为[Formula: see text],其中[Formula: see text]为正整数,[Formula: see text]为子模块化比。然而,该算法可能产生不太理想的结果。我们的下一个结果是描述一个多流算法,这是第一个获得线性查询复杂度近似比率的确定性算法[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Linear-Time Streaming Algorithms for Maximizing Monotone Cardinality-Constrained Set Functions
Many real-world applications arising from social networks, personalized recommendations, and others, require extracting a relatively small but broadly representative portion of massive data sets. Such problems can often be formulated as maximizing a monotone set function with cardinality constraints. In this paper, we consider a streaming model where elements arrive quickly over time, and create an effective, and low-memory algorithm. First, we provide the first single-pass linear-time algorithm, which is a a deterministic algorithm, achieves an approximation ratio of [Formula: see text] for any [Formula: see text] with a query complexity of [Formula: see text] and a memory complexity of [Formula: see text], where [Formula: see text] is a positive integer and [Formula: see text] is the submodularity ratio. However, the algorithm may produce less-than-ideal results. Our next result is to describe a multi-streaming algorithm, which is the first deterministic algorithm to attain an approximation ratio of [Formula: see text] with linear query complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
期刊最新文献
The 4-Set Tree Connectivity of Folded Hypercube An Efficient Algorithm to Compute Dot Product Dimension of Some Outerplanar Graphs The Longest Wave Subsequence Problem: Generalizations of the Longest Increasing Subsequence Problem State Complexity of Boolean Operations on Graph-Walking Automata Deterministic One-Way Simulation of Two-Way Deterministic Finite Automata Over Small Alphabets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1