{"title":"氮素添加对温带森林土壤动物群落的中性效应和降水减少的负效应","authors":"Yajuan Xing, Honglin Wang, Guoyong Yan, Guancheng Liu, Binbin Huang, Yulei Fu, Qinggui Wang","doi":"10.1080/02827581.2023.2263367","DOIUrl":null,"url":null,"abstract":"ABSTRACTNitrogen deposition can promote belowground soil carbon pools, and precipitation reduction can eliminate this positive effect. Soil fauna play crucial roles in regulating the dynamics of organic matter and maintaining biodiversity in ecosystems. However, it is not clear whether belowground soil fauna have similar responses to changes after long-term nitrogen deposition and drought. We simulated nitrogen deposition by applying fertilizer, and simulated drought by excluding 30% of the ambient precipitation in a temperate forest from 2009. Our results showed that experimental precipitation reduction alone significantly changed the composition and decreased the abundance of the soil faunal community. Precipitation reduction could also promote the soil food web in a fungal-dominated pathway by decreasing trophic groups of Isotomidae abundance. In contrast, although nitrogen addition treatment increased soil available nitrogen content, it had a neutral effect on the soil faunal community. Soil faunal community showed strong temporal variations in response to both nitrogen deposition and precipitation reduction treatments. Notably, interactions between precipitation reduction, nitrogen addition, and sampling time were significant for specific trophic groups, including saprozoites and omnivores. Shannon-Weiner diversity was not sensitive to these global change factors. Our results suggest that soil water content and plant richness may, directly and indirectly, regulate the soil faunal community.KEYWORDS: Nitrogen additionprecipitation reductionbiodiversitysoil food webtemperate forest AcknowledgementsWe gratefully acknowledge Professor Guanhua Dai from the Institute of Applied Ecology, Chinese Academy of Sciences, for his advice about field experiment design and suggestions on an earlier draft of this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData are available from the corresponding author on reasonable request.Additional informationFundingThis research was supported by grants from the National Natural Science Foundation of China (42230703, 41575137, 41773075).","PeriodicalId":21352,"journal":{"name":"Scandinavian Journal of Forest Research","volume":"126 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutral effect of nitrogen addition and negative effect of precipitation reduction on the soil faunal community in a temperate forest\",\"authors\":\"Yajuan Xing, Honglin Wang, Guoyong Yan, Guancheng Liu, Binbin Huang, Yulei Fu, Qinggui Wang\",\"doi\":\"10.1080/02827581.2023.2263367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTNitrogen deposition can promote belowground soil carbon pools, and precipitation reduction can eliminate this positive effect. Soil fauna play crucial roles in regulating the dynamics of organic matter and maintaining biodiversity in ecosystems. However, it is not clear whether belowground soil fauna have similar responses to changes after long-term nitrogen deposition and drought. We simulated nitrogen deposition by applying fertilizer, and simulated drought by excluding 30% of the ambient precipitation in a temperate forest from 2009. Our results showed that experimental precipitation reduction alone significantly changed the composition and decreased the abundance of the soil faunal community. Precipitation reduction could also promote the soil food web in a fungal-dominated pathway by decreasing trophic groups of Isotomidae abundance. In contrast, although nitrogen addition treatment increased soil available nitrogen content, it had a neutral effect on the soil faunal community. Soil faunal community showed strong temporal variations in response to both nitrogen deposition and precipitation reduction treatments. Notably, interactions between precipitation reduction, nitrogen addition, and sampling time were significant for specific trophic groups, including saprozoites and omnivores. Shannon-Weiner diversity was not sensitive to these global change factors. Our results suggest that soil water content and plant richness may, directly and indirectly, regulate the soil faunal community.KEYWORDS: Nitrogen additionprecipitation reductionbiodiversitysoil food webtemperate forest AcknowledgementsWe gratefully acknowledge Professor Guanhua Dai from the Institute of Applied Ecology, Chinese Academy of Sciences, for his advice about field experiment design and suggestions on an earlier draft of this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData are available from the corresponding author on reasonable request.Additional informationFundingThis research was supported by grants from the National Natural Science Foundation of China (42230703, 41575137, 41773075).\",\"PeriodicalId\":21352,\"journal\":{\"name\":\"Scandinavian Journal of Forest Research\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Forest Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02827581.2023.2263367\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Forest Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02827581.2023.2263367","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Neutral effect of nitrogen addition and negative effect of precipitation reduction on the soil faunal community in a temperate forest
ABSTRACTNitrogen deposition can promote belowground soil carbon pools, and precipitation reduction can eliminate this positive effect. Soil fauna play crucial roles in regulating the dynamics of organic matter and maintaining biodiversity in ecosystems. However, it is not clear whether belowground soil fauna have similar responses to changes after long-term nitrogen deposition and drought. We simulated nitrogen deposition by applying fertilizer, and simulated drought by excluding 30% of the ambient precipitation in a temperate forest from 2009. Our results showed that experimental precipitation reduction alone significantly changed the composition and decreased the abundance of the soil faunal community. Precipitation reduction could also promote the soil food web in a fungal-dominated pathway by decreasing trophic groups of Isotomidae abundance. In contrast, although nitrogen addition treatment increased soil available nitrogen content, it had a neutral effect on the soil faunal community. Soil faunal community showed strong temporal variations in response to both nitrogen deposition and precipitation reduction treatments. Notably, interactions between precipitation reduction, nitrogen addition, and sampling time were significant for specific trophic groups, including saprozoites and omnivores. Shannon-Weiner diversity was not sensitive to these global change factors. Our results suggest that soil water content and plant richness may, directly and indirectly, regulate the soil faunal community.KEYWORDS: Nitrogen additionprecipitation reductionbiodiversitysoil food webtemperate forest AcknowledgementsWe gratefully acknowledge Professor Guanhua Dai from the Institute of Applied Ecology, Chinese Academy of Sciences, for his advice about field experiment design and suggestions on an earlier draft of this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData are available from the corresponding author on reasonable request.Additional informationFundingThis research was supported by grants from the National Natural Science Foundation of China (42230703, 41575137, 41773075).
期刊介绍:
The Scandinavian Journal of Forest Research is a leading international research journal with a focus on forests and forestry in boreal and temperate regions worldwide.