{"title":"水玻璃浸渍法优化了超高性能硅锰渣混凝土的性能","authors":"Baifu Luo, Dong Wang, Mohamed Elchalakani","doi":"10.1680/jmacr.22.00353","DOIUrl":null,"url":null,"abstract":"Silicomanganese slag (SS) is a byproduct of the ferroalloy industry and cause environmental pollution and consume resources. In this study, the authors explored the use of water glass immersion to improve the performance of SS and used it to produce ultra-high performance concrete (UHPC). The results showed that SS treating with a 2% water glass concentration for 24 hours resulted 16 MPa higher compressive strength for composite than pure UHPC. Additionally, the treated composite had approximately half the mass and compressive strength losses of pure UHPC after freeze-thaw test, indicating that the treatment had a significant positive effect on the freeze-thaw resistance of ultra-high silicomanganese slag performance concrete (UHPSSC). Micro-structural analysis also showed that water glass immersion optimized the morphology of UHPSSC, contributing to improved mechanical performance and freeze-thaw resistance of the composite.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":"440 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimized performance of ultra-high performance silicomanganese slag concrete by water glass immersion\",\"authors\":\"Baifu Luo, Dong Wang, Mohamed Elchalakani\",\"doi\":\"10.1680/jmacr.22.00353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicomanganese slag (SS) is a byproduct of the ferroalloy industry and cause environmental pollution and consume resources. In this study, the authors explored the use of water glass immersion to improve the performance of SS and used it to produce ultra-high performance concrete (UHPC). The results showed that SS treating with a 2% water glass concentration for 24 hours resulted 16 MPa higher compressive strength for composite than pure UHPC. Additionally, the treated composite had approximately half the mass and compressive strength losses of pure UHPC after freeze-thaw test, indicating that the treatment had a significant positive effect on the freeze-thaw resistance of ultra-high silicomanganese slag performance concrete (UHPSSC). Micro-structural analysis also showed that water glass immersion optimized the morphology of UHPSSC, contributing to improved mechanical performance and freeze-thaw resistance of the composite.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":\"440 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.22.00353\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jmacr.22.00353","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The optimized performance of ultra-high performance silicomanganese slag concrete by water glass immersion
Silicomanganese slag (SS) is a byproduct of the ferroalloy industry and cause environmental pollution and consume resources. In this study, the authors explored the use of water glass immersion to improve the performance of SS and used it to produce ultra-high performance concrete (UHPC). The results showed that SS treating with a 2% water glass concentration for 24 hours resulted 16 MPa higher compressive strength for composite than pure UHPC. Additionally, the treated composite had approximately half the mass and compressive strength losses of pure UHPC after freeze-thaw test, indicating that the treatment had a significant positive effect on the freeze-thaw resistance of ultra-high silicomanganese slag performance concrete (UHPSSC). Micro-structural analysis also showed that water glass immersion optimized the morphology of UHPSSC, contributing to improved mechanical performance and freeze-thaw resistance of the composite.
期刊介绍:
For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed.
Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.