{"title":"深基坑地面沉降的弹塑性本构模型","authors":"Hiba El-Arja, Sébastien Burlon, Emmanuel Bourgeois","doi":"10.2478/sgem-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract Ground movements induced by deep excavations may cause damages on neighboring existing buildings. Finite element simulations generally give acceptable estimates of the horizontal displacements of the retaining wall, but results are less satisfactory for the vertical displacements of the ground surface behind the structure. A possible explanation is that most constitutive models describe volumetric strains in a simplified way. This paper proposes an elastoplastic constitutive model aimed at improving the prediction of vertical displacements behind retaining walls. The model comprises a single plastic mechanism with isotropic strain hardening, but has a specific flow rule that allows to generate contractive plastic strains. Identification of the parameters based on triaxial tests is explained and illustrated by an example of calibration. A numerical analysis of a well-documented sheet pile wall in sand in Hochstetten (Germany) is presented. The results given by the model are compared with the measurements and with those obtained using the Hardening Soil Model. The potential advantages of the proposed model are then discussed.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elastoplastic constitutive model for assessing ground settlements induced by deep excavations\",\"authors\":\"Hiba El-Arja, Sébastien Burlon, Emmanuel Bourgeois\",\"doi\":\"10.2478/sgem-2023-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ground movements induced by deep excavations may cause damages on neighboring existing buildings. Finite element simulations generally give acceptable estimates of the horizontal displacements of the retaining wall, but results are less satisfactory for the vertical displacements of the ground surface behind the structure. A possible explanation is that most constitutive models describe volumetric strains in a simplified way. This paper proposes an elastoplastic constitutive model aimed at improving the prediction of vertical displacements behind retaining walls. The model comprises a single plastic mechanism with isotropic strain hardening, but has a specific flow rule that allows to generate contractive plastic strains. Identification of the parameters based on triaxial tests is explained and illustrated by an example of calibration. A numerical analysis of a well-documented sheet pile wall in sand in Hochstetten (Germany) is presented. The results given by the model are compared with the measurements and with those obtained using the Hardening Soil Model. The potential advantages of the proposed model are then discussed.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2023-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
An elastoplastic constitutive model for assessing ground settlements induced by deep excavations
Abstract Ground movements induced by deep excavations may cause damages on neighboring existing buildings. Finite element simulations generally give acceptable estimates of the horizontal displacements of the retaining wall, but results are less satisfactory for the vertical displacements of the ground surface behind the structure. A possible explanation is that most constitutive models describe volumetric strains in a simplified way. This paper proposes an elastoplastic constitutive model aimed at improving the prediction of vertical displacements behind retaining walls. The model comprises a single plastic mechanism with isotropic strain hardening, but has a specific flow rule that allows to generate contractive plastic strains. Identification of the parameters based on triaxial tests is explained and illustrated by an example of calibration. A numerical analysis of a well-documented sheet pile wall in sand in Hochstetten (Germany) is presented. The results given by the model are compared with the measurements and with those obtained using the Hardening Soil Model. The potential advantages of the proposed model are then discussed.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories