{"title":"基于多目标遗传算法的不同硬度车削加工参数优化","authors":"Atiqah Zolpakar","doi":"10.24191/jmeche.v20i3.23899","DOIUrl":null,"url":null,"abstract":"Surface finish and temperature rise are the crucial machining outcomes since it determines the quality of the machining and the tool life. During machining operations, choosing optimal machining parameters is critical since it affects the machining outcome. In this work, Multi-Objective Genetic Algorithm (MOGA) optimization is used to find the combination of machining parameters at different levels of hardness of 20, 36, and 43 to obtain minimum surface roughness and minimum cutting temperature in turning operation. Cutting depth, cutting speed, and feed rate are the machining variables that are used in the process of optimization. From the results, it shows that the minimum temperature rise is 243.333 ℃ with a surface roughness of 1.975 μm during machining of 20 hardness. It also observed that the hardness of the material significantly affects the surface roughness and temperature rise. The outcome shows that as the hardness of the material is increasing the temperature is increasing while the surface roughness is decreasing. This research also revealed that using a MOGA to optimize multi-objective replies produces positive outcomes.","PeriodicalId":16332,"journal":{"name":"Journal of Mechanical Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Machining Parameters in Turning for Different Hardness using Multi-Objective Genetic Algorithm\",\"authors\":\"Atiqah Zolpakar\",\"doi\":\"10.24191/jmeche.v20i3.23899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface finish and temperature rise are the crucial machining outcomes since it determines the quality of the machining and the tool life. During machining operations, choosing optimal machining parameters is critical since it affects the machining outcome. In this work, Multi-Objective Genetic Algorithm (MOGA) optimization is used to find the combination of machining parameters at different levels of hardness of 20, 36, and 43 to obtain minimum surface roughness and minimum cutting temperature in turning operation. Cutting depth, cutting speed, and feed rate are the machining variables that are used in the process of optimization. From the results, it shows that the minimum temperature rise is 243.333 ℃ with a surface roughness of 1.975 μm during machining of 20 hardness. It also observed that the hardness of the material significantly affects the surface roughness and temperature rise. The outcome shows that as the hardness of the material is increasing the temperature is increasing while the surface roughness is decreasing. This research also revealed that using a MOGA to optimize multi-objective replies produces positive outcomes.\",\"PeriodicalId\":16332,\"journal\":{\"name\":\"Journal of Mechanical Engineering\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i3.23899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i3.23899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Optimization of Machining Parameters in Turning for Different Hardness using Multi-Objective Genetic Algorithm
Surface finish and temperature rise are the crucial machining outcomes since it determines the quality of the machining and the tool life. During machining operations, choosing optimal machining parameters is critical since it affects the machining outcome. In this work, Multi-Objective Genetic Algorithm (MOGA) optimization is used to find the combination of machining parameters at different levels of hardness of 20, 36, and 43 to obtain minimum surface roughness and minimum cutting temperature in turning operation. Cutting depth, cutting speed, and feed rate are the machining variables that are used in the process of optimization. From the results, it shows that the minimum temperature rise is 243.333 ℃ with a surface roughness of 1.975 μm during machining of 20 hardness. It also observed that the hardness of the material significantly affects the surface roughness and temperature rise. The outcome shows that as the hardness of the material is increasing the temperature is increasing while the surface roughness is decreasing. This research also revealed that using a MOGA to optimize multi-objective replies produces positive outcomes.
期刊介绍:
Journal of Mechanical Engineering (formerly known as Journal of Faculty of Mechanical Engineering) or JMechE, is an international journal which provides a forum for researchers and academicians worldwide to publish the research findings and the educational methods they are engaged in. This Journal acts as a link for the mechanical engineering community for rapid dissemination of their academic pursuits. The journal is published twice a year, in June and December, which discusses the progress of Mechanical Engineering advancement.