{"title":"上游圆柱周围有三个扰动体交错布置的三圆柱流动动力学特性","authors":"Banta Cut Sutardi","doi":"10.24191/jmeche.v20i3.23902","DOIUrl":null,"url":null,"abstract":"Studies on flow through cylinders have been widely carried out, both experimentally and numerically. The purpose of those studies is to obtain information about flow phenomena around the cylinder arrangement, such as aerodynamic forces, vortex shedding, and vortex-induced vibration. This study aims to evaluate the flow characteristics that pass through three circular cylinders arranged in a stagger and reduce the drag force (CD) by adding 3 disturbance bodies (DB) around the upstream cylinder. The longitudinal distance L/D varies from 1.5 to 4.0, while the transversal distance T/D is kept constant. Next, the diameter ratio d/D is set to 0.16. The diameter of cylinder 1, D=25 mm, and the diameter of the DB, d=4 mm. The DB is placed around cylinder 1 at three angle locations with a gap, δ=4 mm. The study is performed using Ansys fluent® 19.1 software in 2-D unsteady RANS with the transition k-kl-omega turbulence model. The flow Reynolds number based on D is22x104. The results showed that the L/D and the use of DB affect the cylinderdrag coefficient (CD). There is a CD reduction for cylinder 1 up to 20% atL/D=3.0. For cylinders 2 and 3, the reduction in CD occurred at L/D=4.0 upto approximately 13% and 17%, respectively.","PeriodicalId":16332,"journal":{"name":"Journal of Mechanical Engineering","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Behaviour of Flow Through Three Circular Cylinders in Staggered Arrangement with Three Disturbance Bodies Around the Upstream Cylinder\",\"authors\":\"Banta Cut Sutardi\",\"doi\":\"10.24191/jmeche.v20i3.23902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies on flow through cylinders have been widely carried out, both experimentally and numerically. The purpose of those studies is to obtain information about flow phenomena around the cylinder arrangement, such as aerodynamic forces, vortex shedding, and vortex-induced vibration. This study aims to evaluate the flow characteristics that pass through three circular cylinders arranged in a stagger and reduce the drag force (CD) by adding 3 disturbance bodies (DB) around the upstream cylinder. The longitudinal distance L/D varies from 1.5 to 4.0, while the transversal distance T/D is kept constant. Next, the diameter ratio d/D is set to 0.16. The diameter of cylinder 1, D=25 mm, and the diameter of the DB, d=4 mm. The DB is placed around cylinder 1 at three angle locations with a gap, δ=4 mm. The study is performed using Ansys fluent® 19.1 software in 2-D unsteady RANS with the transition k-kl-omega turbulence model. The flow Reynolds number based on D is22x104. The results showed that the L/D and the use of DB affect the cylinderdrag coefficient (CD). There is a CD reduction for cylinder 1 up to 20% atL/D=3.0. For cylinders 2 and 3, the reduction in CD occurred at L/D=4.0 upto approximately 13% and 17%, respectively.\",\"PeriodicalId\":16332,\"journal\":{\"name\":\"Journal of Mechanical Engineering\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i3.23902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i3.23902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Dynamic Behaviour of Flow Through Three Circular Cylinders in Staggered Arrangement with Three Disturbance Bodies Around the Upstream Cylinder
Studies on flow through cylinders have been widely carried out, both experimentally and numerically. The purpose of those studies is to obtain information about flow phenomena around the cylinder arrangement, such as aerodynamic forces, vortex shedding, and vortex-induced vibration. This study aims to evaluate the flow characteristics that pass through three circular cylinders arranged in a stagger and reduce the drag force (CD) by adding 3 disturbance bodies (DB) around the upstream cylinder. The longitudinal distance L/D varies from 1.5 to 4.0, while the transversal distance T/D is kept constant. Next, the diameter ratio d/D is set to 0.16. The diameter of cylinder 1, D=25 mm, and the diameter of the DB, d=4 mm. The DB is placed around cylinder 1 at three angle locations with a gap, δ=4 mm. The study is performed using Ansys fluent® 19.1 software in 2-D unsteady RANS with the transition k-kl-omega turbulence model. The flow Reynolds number based on D is22x104. The results showed that the L/D and the use of DB affect the cylinderdrag coefficient (CD). There is a CD reduction for cylinder 1 up to 20% atL/D=3.0. For cylinders 2 and 3, the reduction in CD occurred at L/D=4.0 upto approximately 13% and 17%, respectively.
期刊介绍:
Journal of Mechanical Engineering (formerly known as Journal of Faculty of Mechanical Engineering) or JMechE, is an international journal which provides a forum for researchers and academicians worldwide to publish the research findings and the educational methods they are engaged in. This Journal acts as a link for the mechanical engineering community for rapid dissemination of their academic pursuits. The journal is published twice a year, in June and December, which discusses the progress of Mechanical Engineering advancement.